4.7 Review

Application of carbon quantum dots to increase the activity of conventional photocatalysts: A systematic review

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 271, 期 -, 页码 857-871

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.molliq.2018.09.064

关键词

Carbon quantum dots; Organic dyes; Photocatalysis; Photodegradation

资金

  1. Research Council of Kermanshah University of Medical Sciences [96349]

向作者/读者索取更多资源

Photocatalysis, a green technique is widely applied in the fields of environmental remediation for the removal of many pollutant constituents. It is known that major problems related to the present photocatalytic system, which significantly limit their photocatalysis efficiency, are low-usage of visible light, fast recombination and also the low migration ability of the photo-generated electrons and holes. To solve the problem associated with conventional photocatalytic systems, recently hybrid photocatalysts containing carbon quantum dots (CQDs) have been proposed. The tunable photocatalytic characteristics of CQDs are widely mentioned. Moreover, the excellent photocatalytic activity of CQDs alone and in combination with photoactive species in the photo-degradation of organic pollutants was confirmed in the many reports. This work presents a comprehensive view of the application of CQDs to improve conventional photocatalytic systems in those studies which considered organic dyes as sample pollutants. In addition to providing detailed information regarding important roles of CQDs in photocatalytic activity enhancement, this review provides the comprehensive details about findings of the photocatalytic degradation of dyes using CQD-based photocatalysts and the best CQD-based composites photocatalysts are highlighted. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Thermodynamics

Power, cooling, freshwater, and hydrogen production system from a new integrated system working with the zeotropic mixture, using a flash-binary geothermal system

Mingming Zhang, Anton Timoshin, Essam A. Al-Ammar, Mika Sillanpaa, Guiju Zhang

Summary: The current paper proposes a new hybrid system based on a binary-geothermal system to generate power, cooling capacity, freshwater, and hydrogen. The system integrates organic Rankine cycle, ejector refrigeration cycle, proton exchange membrane electrolyzer, and reverse osmosis desalination unit. Through precise modeling in Matlab, the system's performance is optimized using multi-objective grey wolf optimization. Results show that the system can achieve high power output, cooling capacity, hydrogen production, and freshwater generation with cost-effectiveness.

ENERGY (2023)

Article Environmental Sciences

Wastewater Management Using Coagulation and Surface Adsorption through Different Polyferrics in the Presence of TiO2-g-PMAA Particles

Heba Saed Kariem Alawamleh, Seyedsahand Mousavi, Danial Ashoori, Hayder Mahmood Salman, Sasan Zahmatkesh, Mika Sillanpaa

Summary: The study aims to improve the performance of membrane treatment for oily wastewater. The effects of pre-treatment, membrane modification, and operational parameters on the microfiltration membrane system were investigated. The results showed that using PFS as a coagulant at pH=6 can achieve a COD reduction of 98%, while using PFC at the same conditions only removes 81% of COD.
Article Biochemistry & Molecular Biology

Biomolecule Protective and Photocatalytic Potential of Cellulose Supported MoS2/GO Nanocomposite

Muhammad Pervaiz, Muti Ur Rehman, Faisal Ali, Umer Younas, Mika Sillanpaa, Rizwan Kausar, Asma A. Alothman, Mohamed Ouladsmane, Mohammad Abdul Mazid

Summary: Cellulose/MoS2/GO nanocomposite was synthesized using a hydrothermal method. The formation of the nanocomposite was confirmed by UV-visible and FTIR spectroscopy, and its particle size and morphology were characterized. The nanocomposite exhibited promising biomolecule protective and photocatalytic potential, making it suitable for environmental remediation.

BIOINORGANIC CHEMISTRY AND APPLICATIONS (2023)

Article Thermodynamics

The innovative optimization techniques for forecasting the energy consumption of buildings using the shuffled frog leaping algorithm and different neural networks

Yiran Yang, Gang Li, Tao Luo, Mohammed Al-Bahrani, Essam A. Al-Ammar, Mika Sillanpaa, Shafaqat Ali, Xiujuan Leng

Summary: This study aims to predict building energy consumption by using neural networks such as support vector machine, gated recurrent unit, extreme learning machine, long short-term memory, and shuffled frog leaping algorithm as an optimizer. Statistical results indicate that long short-term memory and support vector machine are the best neural networks for cooling and heating load forecast, respectively.

ENERGY (2023)

Article Chemistry, Physical

Green Synthesis and Photocatalytic Dye Degradation Activity of CuO Nanoparticles

Sadia Aroob, Sonia A. C. Carabineiro, Muhammad Babar Taj, Ismat Bibi, Ahmad Raheel, Tariq Javed, Rana Yahya, Walla Alelwani, Francis Verpoort, Khanita Kamwilaisak, Saleh Al-Farraj, Mika Sillanpaa

Summary: In this study, CuO nanoparticles were synthesized by a simple, one-pot mechanochemical approach using the leaf extract of Seriphidium oliverianum as a reducing and stabilizing agent. The CuO NPs showed high potential for degrading water-soluble industrial dyes, with degradation rates of 65.231% +/- 0.242 for methyl green (MG) and 65.078% +/- 0.392 for methyl orange (MO). This bio-mechanochemically synthesized CuO NPs are promising candidates for efficient dye removal from water.

CATALYSTS (2023)

Article Chemistry, Analytical

Detection of Levofloxacin Using a Simple and Green Electrochemically Polymerized Glycine Layered Carbon Paste Electrode

Kanthappa Bhimaraya, Jamballi G. Manjunatha, Karnayana P. Moulya, Ammar M. Tighezza, Munirah D. Albaqami, Mika Sillanpaa

Summary: The electrochemically polymerized glycine layered carbon paste electrode (EPGNLCPE) was used as an easy and rapid analytical tool for the analysis of levofloxacin (LN). The EPGNLCPE sensor, compared to the bare carbon paste electrode (BCPE), showed improved surface features and activities. Under optimized conditions, the differential pulse voltammetry method using EPGNLCPE exhibited good linearity, low limit of detection, and low limit of quantification for the analysis of LN. Real-time application of the sensor showed good recovery of LN in medicinal samples.

CHEMOSENSORS (2023)

Article Horticulture

Efficiency of Using Superabsorbent Polymers in Reducing Mineral Fertilizer Rates Applied in Autumn Royal Vineyards

Mervat A. Ali, Samir G. Farag, Mika Sillanpaa, Saleh Al-Farraj, Mohamed E. A. El-Sayed

Summary: The addition of superabsorbent polymers (SAPs) to soil improves soil properties and increases plant yields. The goal of the study was to investigate the effectiveness of SAPs in reducing mineral fertilizer usage and producing high-quality grapes. The study was conducted in a private vineyard in Egypt over three seasons and found that increasing the amount of applied polymer significantly enhanced bud burst, growth parameters, nutrient content, and yield.

HORTICULTURAE (2023)

Review Engineering, Environmental

Metal-organic framework membrane for waterborne micro/nanoplastics treatment

Thuhin Kumar Dey, Jingwei Hou, Mika Sillanpaa, Biplob Kumar Pramanik

Summary: Micro/nanoplastics (MPs/NPs) are widespread and pose a significant threat to the environment. Metal-organic frameworks (MOFs)-based membranes have gained attention for their potential in removing MPs/NPs from water and wastewater. However, challenges such as re-aggregation, cross-contamination, and poor structural stability need to be addressed for the successful application of MOF membranes.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Chemistry, Physical

Low-cost date palm fiber activated carbon for effective and fast heavy metal adsorption from water: Characterization, equilibrium, and kinetics studies

Abir Melliti, Murat Yilmaz, Mika Sillanpaa, Bechir Hamrouni, Radek Vurm

Summary: In this study, low-cost activated carbon (AC-DPF) made from date palm fiber waste was used to remove lead and copper from water systems. AC-DPF had a large surface area and high adsorption capacity, with removal efficiencies of 92% for Pb(II) and 80% for Cu(II). The adsorption kinetics and thermodynamics of AC-DPF were investigated, and competitive and antagonistic effects were observed in the multicomponent system. Overall, AC-DPF showed great potential as a highly promising, effective, and feasible adsorbent for heavy metal removal.

COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS (2023)

Article Chemistry, Analytical

Comprehensive study of the kinetics of combustion and pyrolysis of petrochemical sludge: Experimentation and application of artificial neural network

Shilpi Verma, Mamleshwar Kumar, Ramanpreet Kaur, Praveen Kumar, Mika Sillanpaa, Urska Lavrencic Stangar

Summary: This study analyzed the combustion and pyrolysis behaviors of PTA wastewater sludge and observed reaction orders, exothermic reactions, and auto gasification. The sludges were found to be promising for energy recovery due to their high calorific values. The experimental results were successfully validated using an artificial neural network model.

JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS (2023)

Article Chemistry, Physical

An Efficient Investigation and Machine Learning-Based Prediction of Decolorization of Wastewater by Using Zeolite Catalyst in Electro-Fenton Reaction

Atef El Jery, Moutaz Aldrdery, Ujwal Ramesh Shirode, Juan Carlos Orosco Gavilan, Abubakr Elkhaleefa, Mika Sillanpaa, Saad Sh. Sammen, Hussam H. Tizkam

Summary: The shortage of water resources has led to extensive research in the development of effective and affordable wastewater treatment methods. In this study, a modified catalyst was synthesized using wet impregnation and the hydrothermal technique. The catalyst showed excellent performance in a heterogeneous quasi-electro-Fenton reaction and remained stable under different operational conditions. The findings of this study clarify the potential of the heterogeneous zeolite catalyst in wastewater treatment.

CATALYSTS (2023)

Review Engineering, Civil

A systematic review on application of electrokinetics in stabilization and remediation of problematic soils

B. K. Pandey, C. Shukla, M. Sillanpaeae, S. K. Shukla

Summary: The aim of this study was to evaluate the global research trends in the application of electrokinetics in soil stabilization and remediation. A total of 1562 articles published from 1960 to 2022 were analyzed using the Scopus database. The results show that publication output has significantly increased in the last 5 years, with China, USA, Spain, and South Korea being the top contributing countries.

INNOVATIVE INFRASTRUCTURE SOLUTIONS (2023)

Article Engineering, Chemical

Amoxicillin adsorption from aqueous solution by magnetite iron nanoparticles: molecular modelling and simulation

Shabnam Ahmadi, Soumya Ghosh, Alhadji Malloum, Mika Sillanpaa, Chinenye Adaobi Igwegbe, Prosper E. Ovuoraye, Joshua O. Ighalo

Summary: Molecular modelling and simulation were used to investigate the removal of amoxicillin (AMX) from water using iron nanoparticles (Fe3O4-NPs). The optimal conditions for adsorption were determined. The results showed that AMX molecules have high chemical potential and electrophilicity index, making them reactive. The adsorption of AMX onto Fe3O4-NPs was highly efficient under optimal conditions of pH 3, dosage of 0.5 g/L, AMX concentration of 60 mg/L, and a contact time of 60 min. Langmuir isotherm and pseudo-second-order kinetics provided the best fit to the adsorption data.

INDIAN CHEMICAL ENGINEER (2023)

Article Engineering, Environmental

Hybridized microfiltration-Fenton system for the treatment of greywater

Edris Rezaei, Behrouz Jafari, Mohsen Abbasi, Seyed Abdollatif Hashemifard, Shahriar Osfouri, Mahmoud Ramazani, Nadir Dizge, Mika Sillanpaa

Summary: The purpose of this study is to reuse greywater and prevent its release into the environment. The combined method of membrane and advanced oxidation was used to reduce the COD to the standard value. Ten types of membrane samples with different concentrations of kaolin, alumina, and calcium carbonate were prepared. The results showed that the addition of calcium carbonate increased the porosity and average pore size of the membrane.

JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING (2023)

Article Chemistry, Physical

Tandem CQDs loaded triple metal oxide interface-reinforced built-in electric field for a wide-spectral-responsive photocatalyst

Mohammad K. Okla, M. Kalil Rahiman, Mostafa A. Abdel-Maksoud, Ibrahim A. Alaraidh, Abdulrahman A. Alatar, Saud S. Al-amri, Hamada AbdElgawad, Mika Sillanpaa, S. Sudheer Khan

Summary: In this study, an n-p-n nanohybrid material was designed and synthesized, which consisted of ultrathin-Bi2WO6, CoFe2O4 nanosheets, spherical MnWO4, and carbon quantum dots. The experimental results demonstrated that the nanohybrid material exhibited excellent visible light absorption and efficient Cefixime photodegradation.

COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS (2023)

Article Chemistry, Physical

Dimer-parity dependent odd-even effects in photoinduced transitions to cholesteric and twist grain boundary SmC* mesophases: PBG characteristics

Rajalaxmi Sahoo, C. Reshma, D. S. Shankar Rao, C. V. Yelamaggad, S. Krishna Prasad

Summary: This study investigates the influence of the flexible spacer parity of a guest photoactive liquid crystalline dimer on the photonic bandgap features of the cholesteric and twist grain boundary smectic C phases of the host molecule. The results show that the parity of the photoactive dimer affects the width of the photonic bandgap and the blue-shift of the cholesteric phase. Additionally, the parity of the dimer also affects the layer spacing and two-dimensional periodicity of the liquid crystalline phases.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Understanding the CO2 capture potential of tetrapropylammonium-based multifunctional deep eutectic solvent via molecular simulation

Sara Rozas, Alberto Gutierrez, Mert Atilhan, Alfredo Bol, Santiago Aparicio

Summary: This study presents a multiscale theoretical investigation on the use of bifunctional hydrophobic Deep Eutectic Solvent for carbon capture using tetrapropylammonium chloride, acetic acid, and ethanolamine. The characterization includes nanoscale analysis of CO2 absorption mechanisms and changes in liquid phase properties during gas capture.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Theoretical study of the Cu2+-glycine interaction in ammonia and effects

Tabouli Eric Da-yang, Alhadji Malloum, Jean Jules Fifen, Mama Nsangou, Jeanet Conradie

Summary: In this study, the potential energy of different glycine tautomers and their interaction with Cu2+ cations was investigated. The results showed that the solvation medium and the presence of Cu2+ cations influenced the stability of glycine tautomers.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Morphology study of light- and pH-responsive amphiphiles with DSA for detection of nitrobenzene derivatives

Xiaoliang Gou, Nan Ye, Qingqing Han, Junjie Cui, Long Yi Jin

Summary: In this study, amphiphilic rod-coil molecules with rigid DSA parts and flexible oligoether chains were designed and their assembly capacities were investigated. The morphology of the molecular aggregates was influenced by the pH of the solution and UV light, and the aggregates showed adsorption capacity for nitroaromatic compounds.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Effect of SBS structure on viscosity of SBS-modified asphalt based on molecular dynamics: Insights from shearing phase morphology, adsorption and swelling mechanisms

Shuang Liu, Liyan Shan, Cong Qi, Wenhui Zhang, Guannan Li, Bei Wang, Wei Wei

Summary: Optimizing the design of styrene-butadiene-styrene copolymer (SBS) is crucial for producing cost-effective SBS modifiers and improving road quality. This study examined the influence of SBS content and molecular structure on viscosity and compatibility. The results showed that the viscosity contribution of SBS is determined by its molecular structure and phase morphology.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Vaporization enthalpy of azeotropes by the solution calorimetry method

Artem A. Petrov, Ekaterina A. Titova, Aydar A. Akhmadiyarov, Ilnaz T. Rakipov, Boris N. Solomonov

Summary: This work focuses on the thermochemistry of solvation of azeotropes. The enthalpies of dissolution of azeotropes in different mediums were determined, and the impact of the structure of the azeotropes on their properties in solution was discussed. A correlation between enthalpies of solvation and molar refraction was used to determine the vaporization enthalpies of azeotropes for the first time. The results were found to be consistent with literature data, obtained using direct and calculated methods. These findings contribute to the analysis of the structure-property relationships of azeotropes.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Deep machine learning, molecular dynamics and experimental studies of liquid Al-Cu-Co alloys

L. V. Kamaeva, E. N. Tsiok, N. M. Chtchelkatchev

Summary: Understanding the correlations between liquids and solids allows us to predict the thermodynamic parameter range favorable for the formation of intriguing solid phases by studying liquids. In this study, we experimentally and theoretically investigated an Al-Cu-Co system within different composition ranges, and identified high-temperature solid phases. Our findings demonstrated the correlation between the boundaries of different solid phases and undercooling and viscosity in the concentration area.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Surface adsorption of adenine on pristine and B/N/O/P-doped coronene as a biosensing substrate for DNA detection- DFT study

R. Aneesh Kumar, S. Jamelah Al-Otaibi, Y. Sheena Mary, Y. Shyma Mary, Nivedita Acharjee, Renjith Thomas, Renjith Raveendran Pillai, T. L. Leena

Summary: In this study, the interactions between doped and pristine coronenes and adenine nucleobases were investigated using Density Functional Theory. The optimal configurations, adsorption energies, charge transfer, and electrical properties of each complex were calculated. It was found that doped coronene had stronger adsorption strength and charge transfer compared to pristine coronene. The stability of the complexes was attributed to non-covalent interactions in the interactive region. The change in electrical conductivity of coronenes after adsorption suggested their sensitivity towards DNA bases. The predicted energy gap and prolonged recovery time for adenine-coronene configurations indicated the potential application of pristine/doped coronene in DNA detection.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Study on the fine particles deposition law in the bronchus of miners affected by dust pollution in the anchor excavation working environment

Gang Zhou, Yongwei Liu, Biao Sun, Zengxin Liu, Cuicui Xu, Rulin Liu, Qi Zhang, Yongmei Wang

Summary: The CFD-DEM method was used to simulate the dust deposition pattern in the bronchus of anchor digging drivers, revealing the highest dust concentration in the vortex region of the working face. The study also found a positive correlation between dust particle diameter and bronchial deposition rate, and a negative correlation with alveolar deposition rate.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Unveiling regularities of B12N12-X nanocages as a drug delivery vehicle for the nitrosourea: The influence of periods and groups

Yan Zhang, Yafei Luo, Lingkai Tang, Mingyan E, Jianping Hu

Summary: This study investigates the effects of different transition metal decorations on B12N12 nanocages on the adsorption properties of nitrosourea drugs using computational methods. The results reveal the presence of weak non-covalent interactions between metals and nanocages, and the interaction between drugs and nanocages plays a significant role in drug adsorption. Compared to free drugs, the adsorption of drugs on nanocages can facilitate electron transfer, reduce energy gaps and chemical hardness, indicating activity at the target site.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Aromatic aldehyde oxidation by hexacyanoferrate(III) catalyzed by Ru(VI) in alkaline medium

C. I. Alcolado, J. Poblete, L. Garcia-Rio, E. Jimenez, F. J. Poblete

Summary: In this study, the selective oxidation of aromatic aldehydes was investigated using Ru(VI) as a catalyst and hexacyanoferrate (III) as a cooxidant in an alkaline medium. The reaction mechanism involves complex reaction orders for the oxidant and the aromatic aldehyde, while the reaction order for Ru(VI) is one. The proposed mechanism includes two catalytic cycles and the formation and decomposition of complexes. Quantitative structure-activity relationship analysis showed that deactivating groups in the para-position enhance the process.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Effective removal of hypnotic drug from the aqueous medium through adsorption on graphene oxide magnetic derivatives

Inez A. Barbieri, Marcos L. S. Oliveira, Franciele S. Bruckmann, Theodoro R. Salles, Leonardo Zancanaro, Luis F. O. Silva, Guilherme L. Dotto, Eder C. Lima, Mu. Naushad, Cristiano R. Bohn Rhoden

Summary: This study evaluated the adsorption of zolpidem on magnetic graphene oxide and synthesized magnetic graphene oxide adsorbents for zolpidem removal. The best magnetic nanoadsorbent was found to have a removal percentage of 87.07% at specific pH and temperature conditions. The results suggest that the removal of zolpidem is related to the surface chemistry of the adsorbent rather than the surface area of graphene oxide. The adsorbent showed excellent adsorption efficiency and magnetic behavior, making it a promising material for removing zolpidem from aqueous solutions.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

A sensitivity analysis on thermal conductivity of Al2O3-H2O nanofluid: A case based on molecular dynamics and support vector regression method

Hongyan Huang, Chunquan Li, Siyuan Huang, Yuling Shang

Summary: This study examines the sensitivity of the thermal conductivity of water-based alumina nanofluids to changes in concentration, sphericity, and temperature. The results show that volume fraction and temperature have a significant impact on the thermal conductivity, while sphericity also needs to be considered. A support vector machine regression model was created to analyze the sensitivity of the thermal conductivity to different parameters. The findings indicate that temperature, sphericity, and volume fraction are the most sensitive variables.

JOURNAL OF MOLECULAR LIQUIDS (2024)

Correction Chemistry, Physical

Canonical partition function and distance dependent correlation functions of a quasi-one-dimensional system of hard disks (vol 387,122572, 2023)

V. M. Pergamenshchik, T. Bryk, A. Trokhymchuk

JOURNAL OF MOLECULAR LIQUIDS (2024)

Article Chemistry, Physical

Modifying optical nonlinearities of ionic liquid crystal glass by adding gold and carbon nanoparticles

Valentyn Rudenko, Anatolii Tolochko, Svitlana Bugaychuk, Dmytro Zhulai, Gertruda Klimusheva, Galina Yaremchuk, Tatyana Mirnaya, Yuriy Garbovskiy

Summary: This paper reports on the synthesis, structural characterization, spectral and nonlinear-optical properties of glass nanocomposites made of glass forming ionic liquid crystals and nanoparticles. The study reveals that by exciting the nanocomposites within their absorption band, a control over effective optical nonlinearities can be achieved, allowing the modification of the magnitude and sign of the effective nonlinear absorption coefficient. The proposed strategy using metal-alkanoates based glass-forming ionic liquid crystals and nanoparticles shows great potential for the development of nanophotonics and plasmonics technologies.

JOURNAL OF MOLECULAR LIQUIDS (2024)