4.6 Review

Tight sandstone gas accumulation mechanism and development models

期刊

PETROLEUM SCIENCE
卷 12, 期 4, 页码 587-605

出版社

SPRINGEROPEN
DOI: 10.1007/s12182-015-0061-6

关键词

Tight sandstone gas; Reservoir features; Accumulation mechanism; Type classification; Development mode

资金

  1. National Natural Science Foundation of China [41472112]
  2. National Major Projects [2011ZX05018002]

向作者/读者索取更多资源

Tight sandstone gas serves as an important unconventional hydrocarbon resource, and outstanding results have been obtained through its discovery both in China and abroad given its great resource potential. However, heated debates and gaps still remain regarding classification standards of tight sandstone gas, and critical controlling factors, accumulation mechanisms, and development modes of tight sandstone reservoirs are not determined . Tight sandstone gas reservoirs in China are generally characterized by tight strata, widespread distribution areas, coal strata supplying gas, complex gas-water relations, and abnormally low gas reservoir pressure. Water and gas reversal patterns have been detected via glass tube and quartz sand modeling, and the presence of critical geological conditions without buoyancy-driven mechanisms can thus be assumed. According to the timing of gas charging and reservoir tightening phases, the following three tight sandstone gas reservoir types have been identified: (a) accumulation-densification (AD), or the conventional tight type, (b) densification-accumulation (DA), or the deep tight type, and (c) the composite tight type. For the AD type, gas charging occurs prior to reservoir densification, accumulating in higher positions under buoyancy-controlled mechanisms with critical controlling factors such as source kitchens (S), regional overlaying cap rocks (C), gas reservoirs, (D) and low fluid potential areas (P). For the DA type, reservoir densification prior to the gas charging period (GCP) leads to accumulation in depressions and slopes largely due to hydrocarbon expansive forces without buoyancy, and critical controlling factors are effective source rocks (S), widely distributed reservoirs (D), stable tectonic settings (W) and universal densification of reservoirs (L). The composite type includes features of the AD type and DA type, and before and after reservoir densification period (RDP), gas charging and accumulation is controlled by early buoyancy and later molecular expansive force respectively. It is widely distributed in anticlinal zones, deep sag areas and slopes, and is controlled by source kitchens (S), reservoirs (D), cap rocks (C), stable tectonic settings (W), low fluid potential areas (P), and universal reservoir densification (L). Tight gas resources with great resource potential are widely distributed worldwide, and tight gas in China that presents advantageous reservoir-forming conditions is primarily found in the Ordos, Sichuan, Tarim, Junggar, and Turpan-Hami basins of central-western China. Tight gas has served as the primary impetus for global unconventional natural gas exploration and production under existing technical conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据