4.3 Article

Accelerated Evolutionary Rate of the Myoglobin Gene in Long-Diving Whales

期刊

JOURNAL OF MOLECULAR EVOLUTION
卷 76, 期 6, 页码 380-387

出版社

SPRINGER
DOI: 10.1007/s00239-013-9572-1

关键词

Evolution; Cetaceans; Myoglobin; Positive selection

资金

  1. Fondo Nacional de Desarrollo Cientifico y Tecnologico [FONDECYT 1120032]
  2. CONICYT

向作者/读者索取更多资源

Cetaceans, early in their evolutionary history, had developed many physiological adaptations to secondarily return to the sea. Among these adaptations, changes in molecules that transport oxygen and that ultimately support large periods of acute tissue hypoxia probably represent one big step toward the conquest of aquatic environments. Myoglobin contributes to intracellular oxygen storage and transcellular diffusion of oxygen in muscle, and plays an important role in supplying oxygen in hypoxic or ischemic conditions. Here we looked for evidence of adaptive molecular evolution of myoglobin in the cetacean lineage, relative to their terrestrial counterparts. We performed a comparative analysis to examine the variation of the parameter omega(d(N)/d(S)) and infer past period of adaptive evolution during the cetacean transition from the terrestrial to the aquatic environment. We also analyzed the changes in amino acid properties. At the nucleotide level, the results showed significant differences in selective pressure between cetacean and non-cetacean myoglobin (omega value three times higher in cetaceans when compared to terrestrial mammals), and also among cetacean lineages according to their diving capacities. Interestingly, both families with long duration diving cetaceans present two parallel substitutions (on sites 4 and 12). Regarding the amino acid properties, our analysis identified four significant physicochemical amino acid changes among residues in myoglobin protein under positive destabilizing selection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据