4.4 Article

KRAS, BRAF, and TP53 Deep Sequencing for Colorectal Carcinoma Patient Diagnostics

期刊

JOURNAL OF MOLECULAR DIAGNOSTICS
卷 15, 期 3, 页码 299-311

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jmoldx.2013.02.001

关键词

-

资金

  1. Swiss National Science Foundation

向作者/读者索取更多资源

In colorectal carcinoma, KRAS (alias Ki-ras) and BRAF mutations have emerged as predictors of resistance to anti-epidermal growth factor receptor antibody treatment and worse patient outcome, respectively. In this study, we aimed to establish a high-throughput deep sequencing workflow according to 454 pyrosequencing technology to cope with the increasing demand for sequence information at medical institutions. A cohort of 81 patients with known KRAS mutation status detected by Sanger sequencing was chosen for deep sequencing. The workflow allowed us to analyze seven amplicons (one BRAF, two KRAS, and four TP53 exons) of nine patients in parallel in one deep sequencing run. Target amplification and variant calling showed reproducible results with input DNA derived from FFPE tissue that ranged from 0.4 to 50 ng with the use of different targets and multiplex identifiers. Equimolar pooling of each amplicon in a deep sequencing run was necessary to counterbalance differences in patient tissue quality. Five BRAF and 49 TP53 mutations with functional consequences were detected. The lowest mutation frequency detected in a patient tumor population was 5% in TP53 exon 5. This low-frequency mutation was successfully verified in a second PCR and deep sequencing run. In summary, our workflow allows us to process 315 targets a week and provides the quality, flexibility, and speed needed to be integrated as standard procedure for mutational analysis in diagnostics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据