4.7 Article

Synergy, Structure and Conformational Flexibility of Hybrid Cellulosomes Displaying Various Inter-cohesins Linkers

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 405, 期 1, 页码 143-157

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2010.10.013

关键词

celllulosome; cellulose; inter-cohesins linker; intrinsically disordered protein

资金

  1. TOTAL S.A.
  2. Theoretical and Computational Biophysics group
  3. NIH Resource for Macromolecular Modeling and Bioinformatics, at the Beckman Institute
  4. University of Illinois at Urbana-Champaign

向作者/读者索取更多资源

Cellulosomes are large extracellular multi-enzyme complexes that exhibit elevated activity on plant cell-wall polysaccharides. In the present study, the relationships between the conformational flexibility and efficacy of cellulosomes, and the inter-modules linkers of their scaffold protein were investigated. For this purpose, the length of the intrinsically disordered Ser/Thr-rich 50-residue linker connecting a Clostridium thermocellum and a Clostridium cellulolyticum cohesin in a hybrid scaffoldin (Scaf4) was changed by sequences ranging from 4 to 128 residues. The composition was also modified and new linkers composed of series of N, S or repeats of the EPPV motif were generated. Two model cellulases (Cel48F and Cel9G) appended with appropriate dockerins were subsequently bound to the engineered scaffoldins. All the resulting minicomplexes displayed the same activity on crystalline cellulose as the complex based on the initial Scaf4, and were found to be 2-fold more active than Cel48F and Cel9G bound to separate cohesins. Small-angle X-ray scattering assays of the engineered scaffoldins confirmed, however, that the size and the conformational flexibility of some of the new inter-cohesins linkers differed significantly from that of the initial 50 residue linker displayed by the parental Scaf4. Our data suggest that the synergy induced by proximity does not require a specific inter-cohesins sequence or distance. The present study reveals that complexation onto the hybrid scaffoldins modifies the type of soluble sugars released from crystalline cellulose by the selected cellulases, compared to the free enzyme system. (c) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据