4.7 Article

Comprehensive Analysis of HAMP Domains: Implications for Transmembrane Signal Transduction

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 397, 期 5, 页码 1156-1174

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2010.02.031

关键词

two-component signal transduction; transmembrane signaling; protein evolution; classification; cluster analysis

资金

  1. Max Planck Society

向作者/读者索取更多资源

Homodimeric receptors with one or two transmembrane (TM) segments per monomer are universal to life and represent the largest and most diverse group of cellular TM receptors. They frequently share domain types across phyla and, in some cases, have been recombined experimentally into functional chimeras (e.g., the bacterial aspartate chemoreceptor with the human insulin receptor), suggesting that they have a common mechanism. The nature of this mechanism, however, is still being debated. We have proposed a new model for transduction mechanism by axial helix rotation, based on the structure of a widespread domain, HAMP, that frequently occurs in direct continuation of the last TM segment, primarily in histidine kinases and chemoreceptors. Here we show by statistical analysis that HAMP domain sequences have biophysical properties compatible with the two conformations proposed by the model. The analysis also identifies three networks of coevolving residues, which allow the mechanism to subdivide into individual steps. The most extended of these networks is specific for membrane-bound HAMP domains and most likely accepts the signal from the TM helices. In a classification based on sequence clustering, these HAMPs form a central supercluster, surrounded by smaller clusters of divergent HAMPs, which typically combine into arrays of up to 31 consecutive copies and accept conformational input from other HAMP domains. Unexpectedly, the classification shows a division between domains of histidine kinases and those of chemoreceptors; thus, except for a few versatile lineages, HAMP domains are largely specific for one particular output domain. Within proteins using a given output domain, HAMP domains also show extensive coevolution with histidine kinases, but not with chemoreceptors. We attribute the greater capability for recombination among chemoreceptors to their acquisition of a reversible modification system, which acts as a capacitor for the initially deleterious effects of combining domains optimized in different contexts. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据