4.7 Article

Propensities of Aromatic Amino Acids versus Leucine and Proline to Induce Residual Structure in the Denatured-State Ensemble of Iso-1-cytochrome c

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 403, 期 4, 页码 495-504

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2010.09.004

关键词

denatured states; protein folding; loop formation; residual structure; chain stiffness

资金

  1. National Institute of General Medical Sciences [GM074750-04S1]
  2. University of Montana
  3. MT NSF EPSCoR [EPS-0701906]
  4. [GM074750]

向作者/读者索取更多资源

Histidine-heme loop formation in the denatured state of a protein is a sensitive means for probing residual structure under unfolding conditions. In this study, we use a host-guest approach to investigate the relative tendencies of different amino acids to promote residual structure under denaturing conditions. The host for this work is a 6-amino-acid insert of five alanines, followed by a lysine engineered immediately following a unique histidine near the N-terminus of yeast iso-1-cytochrome c. We substitute the fourth alanine in this sequence HAAAXAK (with X = Trp, Phe, Tyr, and Leu). The effects of proline are tested with substitutions at positions 1 and 5 in the insert (HPAAAAK and HAAAAPK, respectively). Thermodynamic studies on His-heme loop formation in 3 M guanidine hydrochloride reveal significant stabilization of residual structure by aromatic amino acids, particularly Trp and Phe, and minimal stabilization of residual structure by Leu. Prolines slightly disfavor His-heme loop formation, presumably due to enhanced chain stiffness. Kinetic studies reveal that much of the change in His-heme loop stability for the aromatic amino acids is caused by a slowdown in the rate of His-heme loop breakage, indicating that residual structure is preferentially stabilized in the closed-loop form of the denatured state. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Biochemistry & Molecular Biology

Mycobacterium tuberculosis Ku Stimulates Multi-round DNA Unwinding by UvrD1 Monomers

Ankita Chadda, Alexander G. Kozlov, Binh Nguyen, Timothy M. Lohman, Eric A. Galburt

Summary: In this study, it was found that the DNA damage response in Mycobacterium tuberculosis differs from well-studied model bacteria. The DNA repair helicase UvrD1 in Mtb is activated through a redox-dependent process and is closely associated with the homo-dimeric Ku protein. Additionally, Ku protein is shown to stimulate the helicase activity of UvrD1.

JOURNAL OF MOLECULAR BIOLOGY (2024)