4.7 Article

Functional organisation of Escherichia coli transcriptional regulatory network

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 381, 期 1, 页码 238-247

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2008.05.054

关键词

transcriptional regulation; network organisation; multiple phenotypes; homeostasis

向作者/读者索取更多资源

Taking advantage of available functional data associated with 115 transcription and 7 sigma factors, we have performed a structural analysis of the regulatory network of Escherichia coli. While the mode of regulatory interaction between transcription factors (TFs) is predominantly positive, TFs are frequently negatively autoregulated. Furthermore, feedback loops, regulatory motifs and regulatory pathways are unevenly distributed in this network. Short pathways, multiple feed-forward loops and negative autoregulatory interactions are particularly predominant in the subnetwork controlling metabolic functions such as the use of alternative carbon sources. In contrast, long hierarchical cascades and positive autoregulatory loops are overrepresented in the subnetworks controlling developmental processes for biofilm and chemotaxis. We propose that these long transcriptional cascades coupled with regulatory switches (positive loops) for external sensing enable the coexistence of multiple bacterial phenotypes. In contrast, short regulatory pathways and negative autoregulatory loops enable an efficient homeostatic control of crucial metabolites despite external variations. TFs at the core of the network coordinate the most basic endogenous processes by passing information onto multi-element circuits. Transcriptional expression data support broader and higher transcription of global TFs compared to specific ones. Global regulators are also more broadly conserved than specific regulators in bacteria, pointing to varying functional constraints. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据