4.5 Review

Molecular determinants of angiotensin II type 1 receptor functional selectivity

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.yjmcc.2008.09.123

关键词

GPCR; 7TM; Receptor; AT(1); Angiotensin; Functional selectivity; Biased agonism; Molecular mechanisms; Cardiovascular physiology and pharmacology; Structure/activity

资金

  1. Danish Medical Research Council
  2. Kobmand i Odense Johan og Hanne Weimann f. Seedorffs legat
  3. Danish National Research Foundation
  4. Danish Heart Foundation [07-4-B635-A1386-22361]
  5. Novo Nordisk Foundation

向作者/读者索取更多资源

The angiotensin AT(1) receptor is an important pharmacological target in the treatment of cardiovascular disorders, such as hypertension, diabetic nephropathy, cardiac hypertrophy, arrhythmia and failure. Simultaneously, the AT(1) receptor has emerged to be a prominent model for the emerging concept that receptors may attain multiple active states with differentiated functional outcomes. Two major signalling pathways are employed by the AT(1) receptor, namely 1) the canonical G(q) protein-dependent activation of inositol phosphate turnover and intracellular calcium release, and 2) G protein-independent recruitment of beta-arrestin-scaffolded signalling complexes that activate protein kinase pathways. Different states of receptor activation with preference for individual downstream pathways (functional selectivity) have been demonstrated in mutational studies of the AT(1) receptor and by pharmacological probing with analogues of angiotensin II. These studies also provide clues about the conformational changes that underlie different functional outcomes. In this review, we evaluate current knowledge of the molecular determinants of AT(1) receptor activation, which may distinguish G protein-dependent and -independent behaviour. While G protein activation is known to be detrimental, G protein-independent signalling by the AT(1) receptor has been associated with phenotypes such as cell survival and renewal, regulation of cardiac contraction and cell migration. It is therefore currently hypothesized that selective blockade of G protein actions and simultaneous activation of G protein-independent signalling will prove to be a feasible strategy for improved cardiovascular therapy. The pharmacological perspectives of functional selectivity by receptors, such as the AT(1) receptor, urge the elucidation of molecular mechanisms that govern disparate signalling events. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Cardiac & Cardiovascular Systems

Epicardial deletion of Sox9 leads to myxomatous valve degeneration and identifies Cd109 as a novel gene associated with valve development

Andrew B. Harvey, Renelyn A. Woltes, Raymond N. Deepe, Hannah G. Tarolli, Jenna R. Drummond, Allison Trouten, Auva Zandi, Jeremy L. Barth, Rupak Mukherjee, Martin J. Romeo, Silvia G. Vaena, Ge Tao, Robin Muise-Helmericks, Paula S. Ramos, Russell A. Norris, Andy Wessels

Summary: This study highlights the importance of SOX9 in the regulation of epicardial cell invasion and emphasizes the role of EPDCs in regulating atrioventricular valve development and homeostasis. It also reports a novel expression profile of Cd109, a gene with previously unknown relevance in heart development.

JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY (2024)

Review Cardiac & Cardiovascular Systems

Mechanistic target of rapamycin in regulating macrophage function in inflammatory cardiovascular diseases

MariaSanta C. Mangione, Jinhua Wen, Dian J. Cao

Summary: mTOR, a mechanistic target of rapamycin, is an evolutionarily conserved pathway that plays a fundamental role in nutrient sensing, growth, metabolism, lifespan, and aging. Recent studies have highlighted the regulatory role of mTOR in innate immune responses and its involvement in the pathogenesis of cardiovascular diseases, especially in acute inflammation and atherosclerotic cardiovascular disease. This review also discusses mTOR's role in trained immunity, immune senescence, and clonal hematopoiesis, as well as its architecture and regulatory complexes.

JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY (2024)

Article Cardiac & Cardiovascular Systems

Classification of regulatory T cells and their role in myocardial ischemia-reperfusion injury

Junlin Li, Yajun Gong, Yiren Wang, Huihui Huang, Huan Du, Lianying Cheng, Cui Ma, Yongxiang Cai, Hukui Han, Jianhong Tao, Gang Li, Panke Cheng

Summary: Myocardial ischemia-reperfusion injury is closely related to the final infarct size in acute myocardial infarction. Regulatory T cells play an important role in the inflammatory response after AMI, but different subtypes of Tregs have different effects on the injury.

JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY (2024)

Article Cardiac & Cardiovascular Systems

β-hydroxybutyrate administered at reperfusion reduces infarct size and preserves cardiac function by improving mitochondrial function through autophagy in male mice

Yuxin Chu, Yutao Hua, Lihao He, Jin He, Yunxi Chen, Jing Yang, Ismail Mahmoud, Fanfang Zeng, Xiaochang Zeng, Gloria A. Benavides, Victor M. Darley-Usmar, Martin E. Young, Scott W. Ballinger, Sumanth D. Prabhu, Cheng Zhang, Min Xie

Summary: This study demonstrates that administering beta-hydroxybutyrate (beta-OHB) at the time of reperfusion can reduce infarct size and preserve cardiac function by activating autophagy and preserving mitochondrial homeostasis, potentially through mTOR inhibition.

JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY (2024)