4.3 Review

Computational methods in vectorial imaging

期刊

JOURNAL OF MODERN OPTICS
卷 58, 期 5-6, 页码 339-364

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/09500340.2010.525668

关键词

polarisation; vector imaging; microscopy; electromagnetic modelling; high numerical aperture

类别

向作者/读者索取更多资源

In the search for higher resolution, modern day imaging systems frequently employ objective lenses with a high numerical aperture. Propagation of light through such lenses introduces a spatial variation in the polarisation across the beam profile, whilst the inherently large propagation angles also necessitates inclusion of additional transverse and axial electric field components in modelling. A full treatment of polarisation effects including such considerations has implications at all stages in the image formation process, namely; illumination, scattering from the sample, imaging and detection. This tutorial review considers each stage in turn and details the theories required for rigorous modelling and analysis. In particular a generalisation of the well known Jones calculus and ray tracing methods are shown to conveniently and accurately allow rigorous studies of high numerical aperture confocal and conventional polarised light microscopes, imaging samples of arbitrary complexity. Generalisation of the illumination to partially coherent, partially polarised systems is also briefly given. Whilst rigorous modelling techniques can prove time consuming a number of simplifications and approximations can be adopted, allowing computational gains to be achieved. Discussion in this vein is hence also presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据