4.7 Article

Experimental design and optimization of asymmetric flat-sheet membranes prepared for direct contact membrane distillation

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 351, 期 1-2, 页码 234-245

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2010.01.057

关键词

Membrane preparation; Phase inversion; Membrane distillation; Fractional factorial design; Optimization

资金

  1. UCM-BSCH [GR58/08]
  2. University Complutense of Madrid

向作者/读者索取更多资源

Flat-sheet poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, membranes have been prepared using the phase inversion technique based on fractional factorial design. Combined effects of polymer and additive (polyethylene glycol, PEG) concentrations in the casting solutions, solvent evaporation time and coagulation bath temperature on the structural characteristics of the prepared membranes as well as on their direct contact membrane distillation (DCMD) performance have been investigated using statistical approach. The morphological properties of the membranes have been studied in terms of scanning electron microscopy, atomic force microscopy and void volume fraction. The factorial linear models have been developed to describe the main effects of factors on the DCMD responses namely, pure water permeation flux, permeate flux when using salt solution and salt rejection coefficient of the prepared membranes. Analysis of variance showed that all factors have significant effects on the responses. However, the coagulation bath temperature is the least influential factor, while the PVDF-HFP concentration has the greatest effects on both the permeate flux and the salt rejection coefficient. Optimization of membrane preparation conditions has been carried out using a minimum number of experiments and applying Lagrange multipliers optimization method. Under the obtained optimum conditions, 19.1 wt.% PVDF-HFP concentration, 4.99 wt.% PEG concentration, 35 degrees C coagulation bath temperature and 102 s solvent evaporation time, the prepared membrane exhibits the highest salt rejection coefficient, 99.95%, with a permeate flux of 4.41 L/h m(2). (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据