4.7 Article

High-performance silicon nanopore hemofiltration membranes

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 326, 期 1, 页码 58-63

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2008.09.039

关键词

Hemofiltration; Artificial kidney; Nanotechnology; MEMS; Silicon

资金

  1. National Institute of Biomedical Imaging and Bioengineering, NIH [1K08 EB003468, 1 R01 EB008049-01]
  2. U.S. Army Medical Research and Materiel Command, DoD [W81XWH-05-2-0010]
  3. Directorate For Engineering
  4. Div Of Engineering Education and Centers [0755263] Funding Source: National Science Foundation

向作者/读者索取更多资源

Silicon micromachining provides the precise control of nanoscale features that can be fundamentally enabling for miniaturized, implantable medical devices. Concerns have been raised regarding blood biocompatibility of silicon-based materials and their application to hemodialysis and hemofiltration. A high-performance ultrathin hemofiltration membrane with monodisperse slit-shaped pores was fabricated using a sacrificial oxide technique and then surface-modified with poly(ethylene glycol) (PEG). Fluid and macromolecular transport matched model predictions well. Protein adsorption, fouling, and thrombosis were significantly inhibited by the PEG. The membrane retained hydraulic permeability and molecular selectivity during a 90-h hemofiltration experiment with anticoagulated bovine whole blood. This is the first report of successful prolonged hemofiltration with a silicon nanopore membrane. The results demonstrate feasibility of renal replacement devices based on these membranes and materials. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据