4.7 Article

Synthesis of Novel N-Branched Acyclic Nucleoside Phosphonates As Potent and Selective Inhibitors of Human, Plasmodium falciparum and Plasmodium vivax 6-Oxopurine Phosphoribosyltransferases

期刊

JOURNAL OF MEDICINAL CHEMISTRY
卷 55, 期 13, 页码 6209-6223

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jm300662d

关键词

-

资金

  1. Grant Agency of the Czech Republic [P207/11/0108]
  2. Centre for New Antivirals and Antineoplastics [1M0508]
  3. National Health and Medical Research Council, Australia [569703, 1030353]
  4. Gilead Sciences (Foster City, CA, USA)
  5. Institute of Organic Chemistry and Biochemistry [RVO 61388963]

向作者/读者索取更多资源

Hypoxanthine-guanine-(xanthine) phosphoribosyltransferase (HG(X)PRT) is crucial for the survival of malarial parasites Plasmodium falciparum (Pf) and Plasmodium vivax (Pv). Acyclic nucleoside phosphonates (ANPs) are inhibitors of HG(X)PRT and arrest the growth of Pf in cell culture. Here, a novel class of ANPs containing trisubstituted nitrogen (aza-ANPs) has been synthesized. These compounds have a wide range of K-i values and selectivity for human HGPRT, PfHGXPRT, and PvHGPRT. The most selective and potent inhibitor of PfHGXPRT is 9-N-(3-methoxy-3-oxopropyl)-N-(2-phosphonoethyl)-2-aminoethyl]hypoxanthine (K-i = 100 nM): no inhibition could be detected against the human enzyme. This compound exhibits the highest ever reported selectivity for PfHGXPRT compared to human HGPRT. For PvHGPRT, 9-[N-(2-carboxyethyl)-N-(2-phosphonoethyl)-2-aminoethyl]guanine has a Ki of SO nM, the best inhibitor discovered for this enzyme to date. Docking of these compounds into the known structures of human HGPRT in complex with ANP-based inhibitors suggests reasons for the variations in affinity, providing insights for the design of antimalarial drug candidates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据