4.7 Article

Is quantum mechanics necessary for predicting binding free energy?

期刊

JOURNAL OF MEDICINAL CHEMISTRY
卷 51, 期 14, 页码 4280-4288

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jm800242q

关键词

-

向作者/读者索取更多资源

To take into account polarization effects, the linear interaction energy model with continuum electrostatic solvation (LIECE) is supplemented by the linear-scaling semiempirical quantum mechanical calculation of the intermolecular electrostatic energy QMLIECE). QMLIECE and LIECE are compared on three enzymes belonging to different classes: the West Nile virus NS3 serine protease (WNV PR), the aspartic protease of the human immunodeficiency virus (HIV-1 PR), and the human cyclin-dependent kinase 2 (CDK2). QMLIECE is superior for 44 peptidic inhibitors of WNV PR because of the different amount of polarization due to the broad range of formal charges of the inhibitors (from 0 to 3). On the other hand, QMLIECE and LIECE show similar accuracy for 24 peptidic inhibitors of HIV-1 PR (20 neutral and 4 with one formal charge) and for 73 CDK2 inhibitors (all neutral). These results indicate that quantum mechanics is essential when the inhibitor/protein complexes have highly variable charge-charge interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据