4.7 Article

Synthesis and Structure-Activity Relationship Studies of 2-(N-Substituted)-aminobenzimidazoles as Potent Negative Gating Modulators of Small Conductance Ca2+-Activated K+ Channels

期刊

JOURNAL OF MEDICINAL CHEMISTRY
卷 51, 期 23, 页码 7625-7634

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jm800809f

关键词

-

向作者/读者索取更多资源

Small conductance Ca2+-activated K+ channels (SK channels) participate in the control of neuronal excitability, in the shaping of action potential firing patterns, and in the regulation of synaptic transmission. SK channel inhibitors have the potential of becoming new drugs for treatment of various psychiatric and neurological diseases such as depression, cognition impairment, and Parkinson's disease. In the present study we describe the structure-activity relationship (SAR) of a class of 2-(N-substituted)-2-aminobenzimidazoles that constitute a novel class of selective SK channel inhibitors that, in contrast to classical SK inhibitors, do not block the pore of the channel. The pore blocker apamin is not displaced by these compounds in binding studies, and they still inhibit SK channels in which the apamin binding site has been abolished by point mutations. These novel SK inhibitors shift the concentration-response curve for Ca2+ toward higher values and represent the first example of negative gating modulation as a mode-of-action for inhibition of SK channels. The first described compound in this class is NS8593 (14), and the most potent analogue identified in this study is the racemic compound 39 (NS11757), which reversibly inhibits SK3-rnediated currents with a K-d value of 9 nM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据