4.3 Article

Glutathione S Transferase Activity in Indian Vectors of Malaria: A Defense Mechanism Against DDT

期刊

JOURNAL OF MEDICAL ENTOMOLOGY
卷 48, 期 3, 页码 561-569

出版社

OXFORD UNIV PRESS INC
DOI: 10.1603/ME10194

关键词

glutathione S transferases (GSTs); DDT resistance; An. culicifacies; An. annularis; India

向作者/读者索取更多资源

Glutathione S transferases (GSTs) are multifunctional enzymes involved in detoxification of xenobiotic compounds in majority of the insect groups. Significance of insect GSTs is their elevated level of activity in association with insecticide resistance. This investigation was to explore the metabolic status of GSTs in two Indian DDT-resistant malaria vectors, Anopheles culicifacies and Anopheles annularis, and one DDT-susceptible vector, Anopheles fluviatilis. Malkangiri and Koraput districts of Orissa State, endemic for falciparum malaria and having a long insecticide spraying history, were the study areas. F-1 progeny was raised from wild-caught females of the three vectors and used for biochemical assays to detect the GST-mediated DDT resistance mechanism. Results of the enzyme assay showed a significant 3-fold increase in GST activity in DDT-resistant An. annularis compared with its susceptible population. In DDT-resistant An. culicifacies, the median GST activity (71.8 mu mol/min/mg) was almost the same as estimated in the DDT-resistant An. annularis (74.6 mu mol/min/mg), suggesting that the GST activity estimated in An. culicifacies could be an elevated level for detoxification of DDT. Furthermore, the GST activity in DDT-resistant An. culicifacies and An. annularis was significantly higher than that in the DDT-susceptible An. fluviatilis, which had a GST activity of 20.0 mu mol/min/mg. Also, the GST-mediated DDT detoxification was confirmed by comparing GST activity in wild-caught females with that in their F-1 progeny.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据