4.6 Article

In situ one pot synthesis of nanoscale TiO2-anchored reduced graphene oxide (RGO) for improved photodegradation of 5-fluorouracil drug

期刊

出版社

SPRINGER
DOI: 10.1007/s10854-018-9749-x

关键词

-

资金

  1. Korea Institute of Energy Technology Evaluation and Planning (KETEP)
  2. Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea [20174030201530]
  3. Department of Science and Technology and University Grants Commission, New Delhi

向作者/读者索取更多资源

This paper reports an 'in situ' precipitation-reduction reaction for the scalable production of nanoscale TiO2-anchored reduced graphene oxide (RGO-TiO2) nanocomposites. RGO-TiO2 nanocomposites with different weight ratios were prepared by the simultaneous hydrolysis of titanium tetraisopropoxide (TTIP) and the chemical reduction of graphene oxide. The as-prepared samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, Ultraviolet-Visible diffused reflectance spectroscopy, and photoluminescence. The most commonly used cytostatic (antineoplastic) drug in cancer therapies [5-fluorouracil (5-FU)] was used as a model pollutant. To examine the effects of RGO, the photocatalytic degradation of 5-FU was examined by varying the operational parameters, such as catalyst amounts, solution pH, effect of scavenger, and TiO2 mass contents. Under the optimal experimental conditions, 97% of the 5-FU present was photodegraded over RGO-TiO2 (RGO-T2) within 90 min under UV light. The RGO-TiO2 composites (RGO-T2) exhibited two times higher photocatalytic activity than that of pure TiO2. The improved photocatalytic activities of the RGO-TiO2 nanocomposites were attributed to the homogeneous distribution of TiO2 nanoparticles over the surface of the RGO nanosheet, enhancement of the light absorption intensity, and suppressed recombination of photoinduced electron-hole pairs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据