4.7 Article

Novel Magnesium Alloys Developed for Biomedical Application: A Review

期刊

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
卷 29, 期 6, 页码 489-502

出版社

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2013.02.005

关键词

Biomaterials; Magnesium alloys; Biodegradation; Mechanical property; Biocompatibility

资金

  1. National Basic Research Program of China (973 Program) [2012CB619102, 2012CB619100]
  2. National Science Fund for Distinguished Young Scholars [51225101]
  3. National Natural Science Foundation of China [31170909]
  4. Research Fund for the Doctoral Program of Higher Education [20100001110011]
  5. Natural Science Foundation of Heilongjiang Province [ZD201012]
  6. Project for Supervisor of Excellent Doctoral Dissertation of Beijing [20121000101]
  7. Guangdong Province Innovation RD Team Project [201001 C0104669453]

向作者/读者索取更多资源

There is an increasing interest in the development of magnesium alloys both for industrial and biomedical applications. Industrial interest in magnesium alloys is based on strong demand of weight reduction of transportation vehicles for better fuel efficiency, so higher strength, and better ductility and corrosion resistance are required. Nevertheless, biomedical magnesium alloys require appropriate mechanical properties, suitable degradation rate in physiological environment, and what is most important, biosafety to human body. Rather than simply apply commercial magnesium alloys to biomedical field, new alloys should be designed from the point of view of nutriology and toxicology. This article provides a review of state-of-the-art of magnesium alloy implants and devices for orthopedic, cardiovascular and tissue engineering applications. Advances in new alloy design, novel structure design and surface modification are overviewed. The factors that influence the corrosion behavior of magnesium alloys are discussed and the strategy in the future development of biomedical magnesium alloys is proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Physical

Novel bioactive Ti-Zn alloys with high strength and low modulus for biomedical applications

M. H. Qi, J. L. Xu, T. Lai, J. Huang, Y. C. Ma, J. M. Luo, Y. . F. Zheng

Summary: This paper investigates the microstructure, mechanical properties, corrosion behaviors, and in vitro biological properties of novel binary Ti-Zn alloys prepared via hot-press sintering. The Ti-Zn alloys exhibit high strength, low elastic modulus, excellent corrosion resistance, and intrinsic bioactivity. These alloys show promising potential for biomedical applications based on their favorable mechanical performance, corrosion resistance, and cytocompatibility.

JOURNAL OF ALLOYS AND COMPOUNDS (2023)

Article Materials Science, Multidisciplinary

Double Substituted with Manganese and Strontium Tricalcium Phosphate Coatings on Zinc-Lithium Biodegradable Alloys for Biomedical Implant Applications

Julietta V. Rau, Angela De Bonis, Roberto Teghil, Mariangela Curcio, Inna V. Fadeeva, Katia Barbaro, Massimo Di Menno Di Bucchianico, Marco Fosca, Yufeng Zheng

Summary: In this study, a biodegradable alloy of zinc-lithium (Zn-Li) was coated with a resorbable tricalcium phosphate (Mn,Sr-TCP) doped with manganese and strontium using the Pulsed Laser Deposition method. The coating was characterized using various techniques, and microbiology experiments were performed to test the growth inhibition of bacteria strains and fungus. The results showed that the Mn,Sr-TCP-coated Zn-Li samples exhibited about 10% inhibition on the growth of all four bacteria strains and had the most pronounced effect on Candida albicans fungus (about 50% inhibition of growth). The prepared coatings have the potential to improve the degradation behavior and biological characteristics of Zn-Li alloys.

COATINGS (2023)

Article Chemistry, Physical

Defective Homojunction Porphyrin-Based Metal-Organic Frameworks for Highly Efficient Sonodynamic Therapy

Yuxuan Zeng, Qunle Ouyang, Yi Yu, Lei Tan, Xiangmei Liu, Yufeng Zheng, Shuilin Wu

Summary: Sonodynamic therapy (SDT) has attracted attention for treating deep-seated tumors or infections due to its non-invasiveness and high tissue-penetrating ability. This study develops a defective homojunction porphyrin-based metal-organic framework (MOF) that greatly enhances sonocatalytic ability for SDT of MRSA-infected osteomyelitis. The MOF structure is modified using acetic acid and benzoic acid, and the defect-induced homojunction structure is found to improve the SDT effect by enhancing ultrasound-triggered reactive oxygen species production.

SMALL METHODS (2023)

Article Materials Science, Multidisciplinary

Composition-dependent shuffle-shear coupling and shuffle-regulated strain glass transition in compositionally modulated Ti-Nb alloys

Yunting Su, Chuanxin Liang, Xun Sun, Hualei Zhang, Qianglong Liang, Yufeng Zheng, Yulin Hao, Rui Yang, Dong Wang, Dipankar Banerjee, Yunzhi Wang

Summary: Through the integration of thermodynamic databases, first-principles calculations, phase field simulations, and experiments, this study reveals the coupling between the shuffle (O ') and shear (alpha'', orthorhombic martensite) nanodomains in Ti-Nb alloys. The transformation path changes with Nb concentration, and the resulting microstructural states exhibit an unprecedented continuous transformation behavior with superelasticity and almost zero hysteresis. This research provides new insight in alloy design by utilizing composition-dependent shuffle-shear coupling during a structural phase transformation.

ACTA MATERIALIA (2023)

Article Chemistry, Multidisciplinary

Ultrasound-Controlled Electron-Phonon Coupling Augmenting Catalysis of Piezoelectric-Based Sonosensitizer Safely Against Osteomyelitis

Jieni Fu, Shuilin Wu, Shengli Zhu, Yufeng Zheng, Hui Jiang, Dongbin Wang, Zhaoyang Li, Zhenduo Cui, Xiangmei Liu

Summary: The energy transfer and efficiency of ultrasound to piezoelectric materials play a crucial role in the catalytic performance and therapeutic effects for deep infection diseases. The microbubble cavitation near the surface of BTO/Ber NPs under ultrasound leads to sonoluminescence and high pressure, further activating Ber and enabling electron transfer with changing energy levels of BTO NPs. The piezoelectric electron-phonon coupling caused by ultrasound narrows bandgap and prolongates carrier-lifetime, resulting in increased ROS generation and antibacterial activity against Staphylococcus aureus.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Multidisciplinary

Lithium-Induced Optimization Mechanism for an Ultrathin-Strut Biodegradable Zn-Based Vascular Scaffold

Hongtao Yang, Dawei Jin, Jiancun Rao, Jiahui Shi, Guannan Li, Cheng Wang, Kai Yan, Jing Bai, Guo Bao, Meng Yin, Yufeng Zheng

Summary: In order to reduce the occurrence of restenosis and thrombosis in stents, it has been clinically proven that using a thinner-strut stent is effective. Therefore, there is a current trend towards using ultrathin-strut (<= 70 μm) designs for durable stents. However, stents made from biodegradable platforms have not been able to achieve breakthroughs across generations due to their excessively thick struts.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

Superlattice Nanofilm on a Touchscreen for Photoexcited Bacteria and Virus Killing by Tuning Electronic Defects in the Heterointerface

Jun Li, Chaofeng Wang, Shuilin Wu, Zhenduo Cui, Yufeng Zheng, Zhaoyang Li, Hui Jiang, Shengli Zhu, Xiangmei Liu

Summary: Currently, developing a self-disinfecting coating on touchscreens has become an urgent and meaningful task due to the increased public attention toward the spread of pathogenic viruses and bacteria. In this study, a ZnO-Fe2O3 superlattice nanofilm with engineered electronic defects is designed via atomic layer deposition for photocatalytic bactericidal and virucidal touchscreen. The nanofilm exhibits high antibacterial and antiviral efficacy (>90%) against drug-resistant bacteria and H1N1 viruses under simulated solar or low-power LED light irradiation, while also demonstrating excellent light transmission (>90%), abrasion resistance, and biocompatibility on touchscreens.

ADVANCED MATERIALS (2023)

Article Engineering, Biomedical

Ultrasmall Cortex Moutan Nanoclusters for the Therapy of Pneumonia and Colitis

Yuan Li, Xiangmei Liu, Yufeng Zheng, Yu Zhang, Zhaoyang Li, Zhenduo Cui, Hui Jiang, Shengli Zhu, Shuilin Wu

Summary: Bactericidal nanoclusters formed through self-assembly were shown to be effective in treating infectious pneumonia and enteritis. These nanoclusters, made up of cortex moutan nanoclusters, possess excellent antibacterial, antiviral, and immune regulation activity. They have enhanced tissue and mucus permeability ability compared with natural counterparts.

ADVANCED HEALTHCARE MATERIALS (2023)

Article Chemistry, Multidisciplinary

Enhancing Microwave Dynamic Effects via Surface States of Ultrasmall 2D MOF Triggered by Interface Confinement for Antibiotics-Free Therapy

Yuqian Qiao, Shuilin Wu, Yufeng Zheng, Chaofeng Wang, Zhaoyang Li, Yu Zhang, Shengli Zhu, Hui Jiang, Zhenduo Cui, Xiangmei Liu

Summary: Microwave (MV)-trigged dynamic therapy using MV-responsive materials shows promise for treating deep infection diseases, including life-threatening osteomyelitis, that are not effectively treated by antibiotics. Surface states of materials play a key role in the generation of free charges and the MV dynamic effects. A new MV responsive system, consisting of a 2D metal-organic framework (2D MOF) on oxidized carbon nanotube (CNT), is developed, which exhibits highly effective antimicrobial activity and eradicates Staphylococcus aureus infected rabbit tibia osteomyelitis under MV irradiation. This study represents a major advancement in antibiotic-free MV therapy for deep tissue bacterial infection.

ADVANCED SCIENCE (2023)

Article Engineering, Biomedical

The biological properties of 3D-printed degradable magnesium alloy WE43 porous scaffolds via the oxidative heat strategy

Shuyuan Min, Chaoxin Wang, Bingchuan Liu, Jinge Liu, Yu Liu, Zehao Jing, Yan Cheng, Peng Wen, Xing Wang, Yufeng Zheng, Yun Tian

Summary: Magnesium alloy is a biodegradable material with a modulus similar to bone and has the potential to be used as a bone grafting material. Oxidation heat treatment is an effective passivation method that can slow down the degradation of magnesium alloy. The cytotoxicity and osteogenic induction experiments showed that oxidation heat-treated scaffolds exhibited good biocompatibility and accelerated cell proliferation, leading to increased alkaline phosphatase activity, mineralized nodule quantity, and bone growth marker protein expression. Therefore, oxidation heat-treated 3D printing scaffolds have great potential in fixing bone defects as advanced biomaterials.

INTERNATIONAL JOURNAL OF BIOPRINTING (2023)

Article Materials Science, Ceramics

Dependence of antimicrobial properties on site-selective arrangement and concentration of bioactive Cu2+ions in tricalcium phosphate

V. Dina Deyneko, Yufeng Zheng, Katia Barbaro, Vladimir N. Lebedev, Sergey M. Aksenov, Elena Yu Borovikova, Marat R. Gafurov, V. Inna Fadeeva, Bogdan I. Lazoryak, Giuseppina Di Giacomo, Claudia Cicione, Veronica Tilotta, Fabrizio Russo, Gianluca Vadala, V. Julietta Rau

Summary: Cu-doped solid solutions Ca10.5-xCux(PO4)7 with beta-Ca3(PO4)2 (beta-TCP) structure were synthesized. The location of Cu2+ ions in the structure was investigated and found to be influenced by the Cu concentration. The antibacterial properties and biocompatibility of the samples were studied, revealing the importance of phase purity.

CERAMICS INTERNATIONAL (2023)

Review Chemistry, Multidisciplinary

Natural Extracts for Antibacterial Applications

Cuihong Chen, Lin Chen, Congyang Mao, Liguo Jin, Shuilin Wu, Yufeng Zheng, Zhenduo Cui, Zhaoyang Li, Yu Zhang, Shengli Zhu, Hui Jiang, Xiangmei Liu

Summary: Bacteria-induced epidemics and infectious diseases pose a serious threat to global health. The increasing bacterial resistance caused by antibiotic therapy has made it urgent to develop new treatment strategies to combat bacteria, including multidrug-resistant bacteria. Natural extracts with antibacterial activity and biocompatibility have gained attention as a safer alternative to synthetic chemicals. This review summarizes recent advances in natural extracts from plants, animals, and microorganisms for antibacterial applications, discussing their mechanisms and future development in the field. The review also highlights the categories of antibacterial natural extracts, their treatment of bacterial diseases, and their antimicrobial mechanisms, as well as the prospects and challenges for the therapy of bacterial diseases using natural extracts.
Article Engineering, Biomedical

A Dose-Dependent Spatiotemporal Response of Angiogenesis Elicited by Zn Biodegradation during the Initial Stage of Bone Regeneration

Junlong Tan, Shuang Li, Chaoyang Sun, Guo Bao, Meijing Liu, Zehao Jing, Hanwei Fu, Yanhua Sun, Qingmin Yang, Yufeng Zheng, Xiaogang Wang, Hongtao Yang

Summary: Zn biodegradation induces a consistent, dose-dependent spatioteporal response in angiogenesis, both in vivo and in vitro. The concentration of degradation products tends to spread in a decreasing direction centered on the implant. Meanwhile, vasularization significantly increases at a distance of 100-200 mu m from the implant. Vascular endothelial cells show similar effects being affected by different doses of Zn extraction.

ADVANCED HEALTHCARE MATERIALS (2023)

Article Engineering, Biomedical

The effect of pore size on the mechanical properties, biodegradation and osteogenic effects of additively manufactured magnesium scaffolds after high temperature oxidation: An in vitro and in vivo study

Chaoxin Wang, Jinge Liu, Shuyuan Min, Yu Liu, Bingchuan Liu, Yuanyu Hu, Zhengguang Wang, Fengbiao Mao, Caimei Wang, Xiaolin Ma, Peng Wen, Yufeng Zheng, Yun Tian

Summary: This study investigated the effects of pore size on the mechanical properties, biodegradation, and new bone formation of additively manufactured biodegradable porous magnesium scaffolds. It was found that high temperature oxidation improved the corrosion resistance of the magnesium scaffold. Scaffolds with a pore size of 500μm showed better mechanical characteristics and supported the survival of mesenchymal stem cells without local toxicity. They also released more magnesium ions and improved the osteogenic differentiation of bone mesenchymal stem cells compared to scaffolds with larger pore sizes. In a rabbit femoral condyle defect model, the 500μm group exhibited unique performance in promoting new bone formation, indicating its potential for bone defect regeneration therapy.

BIOACTIVE MATERIALS (2023)

Article Engineering, Biomedical

Dual-sized hollow particle incorporated fibroin thermal insulating coatings on catheter for cerebral therapeutic hypothermia

Ming Li, Yuan Gao, Miaowen Jiang, Hongkang Zhang, Yang Zhang, Yan Wu, Wenhao Zhou, Di Wu, Chuanjie Wu, Longfei Wu, Luzi Bao, Xiaoxiao Ge, Zhengfei Qi, Ming Wei, Ang Li, Yuchuan Ding, Jicheng Zhang, Guangzhen Pan, Yu Wu, Yan Cheng, Yufeng Zheng, Xunming Ji

Summary: Researchers have developed a catheter with a thermally-insulated coating, which improves cooling efficiency and provides neuroprotection for patients with acute ischemic stroke.

BIOACTIVE MATERIALS (2023)

Article Materials Science, Multidisciplinary

Facet-dependent CuO/{010}BiVO 4 S-scheme photocatalyst enhanced peroxymonosulfate activation for efficient norfloxacin removal

Tongyu Han, Haifeng Shi, Yigang Chen

Summary: In this study, a novel S-scheme system was built by combining CuO with BiVO4 to activate PMS for antibiotic degradation. The system exhibited excellent visible light absorption performance and remarkable charge separation ability, suggesting its potential application in enhancing PMS activation and purifying antibiotics in water.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

PVDF/6H-SiC composite fiber films with enhanced piezoelectric performance by interfacial engineering for diversified applications

Linlin Zhou, Tao Yang, Chunyu Guo, Kang Wang, Enhui Wang, Laipan Zhu, Hailong Wang, Sheng Cao, Kuo-Chih Chou, Xinmei Hou

Summary: Piezoelectric silicon carbide (SiC) has been considered for various applications due to its superior properties. However, its brittleness and unsatisfactory piezoelectric response have limited its use. In this study, PVDF/6H-SiC composite fiber films were fabricated and used for assembling high-performance energy harvesters and sensors. The results showed significant improvements in piezoelectric response and sensitivity compared to pure PVDF films. First-principles calculation and finite element analysis confirmed the effect of SiC nanoparticles on the composite film.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Precipitation transformation pathway and mechanical behavior of nanoprecipitation strengthened Fe-Mn-Al-C-Ni austenitic low-density steel

Y. F. An, X. P. Chen, L. Mei, P. Ren, D. Wei, W. Q. Cao

Summary: This study systematically investigates the precipitation sequence of Fe-28Mn-11Al-1C-5Ni austenitic low-density steel and its influence on mechanical properties. The results reveal the transformation pathway of kappa' -carbides and B2 particles under different aging conditions. This research is meaningful for guiding the design of new generation dual-nano precipitation austenitic lightweight steel.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Modulating oxygen vacancy concentration for selective growth of semiconducting single-walled carbon nanotubes with narrow diameters

Lei Yang, Tingkai Zhao, Abdul Jalil, Huijun Luo, Tao Jiang, Yuan Shu, Yazhou Yin, Weiyu Jia

Summary: In this study, a strategy utilizing oxygen vacancy concentration modulation was used to successfully grow semiconducting single-walled carbon nanotubes (s-SWCNTs) with narrow diameters. The Fe0.01Mg0.99O/CeO2(3) catalyst was employed to provide oxygen vacancies, allowing for selective etching of chemically active carbon nanotube caps during the growth process. The optimized conditions resulted in high purity s-SWCNTs with uniform diameters.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Letter Materials Science, Multidisciplinary

Corrosion-resistant chromium steels for oil and gas pipelines can suffer from very severe pitting corrosion by a sulfate-reducing bacterium

Lingjun Xu, Pruch Kijkla, Sith Kumseranee, Suchada Punpruk, Tingyue Gu

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Polydopamine wrapped polyaniline nanosheets: Synthesis and anticorrosion application for waterborne epoxy coatings

X. P. Hu, Y. H. Zhang, C. B. Liu, H. Z. Cui

Summary: In this study, a novel polyaniline (PANI) nanosheet with barrier and passivation functions was synthesized, and its interaction with polymeric resin was enhanced by polydopamine (PDA) wrapping. The composite coating with incorporated PANI@PDA nanosheets showed improved corrosion resistance by providing a longer penetration path and inducing the formation of a passivation film on the metal substrate.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

MXene@Co hollow spheres structure boosts interfacial polarization for broadband electromagnetic wave absorption

Yan Zhang, Xuehua Liu, Zhiqiang Guo, Chenyu Jia, Feng Lu, Zirui Jia, Guanglei Wu

Summary: In this study, a self-assembling-etching-anchoring growth method was proposed to prepare MXene@Co electromagnetic wave absorbing materials. The hollow structure design and surface anchored growth of magnetic Co particles significantly enhanced the wave absorption performance of the absorber.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Review Materials Science, Multidisciplinary

Recent progress in CdS-based S-scheme photocatalysts

Yajing Ren, Yunfeng Li, Guixu Pan, Ning Wang, Yan Xing, Zhenyi Zhang

Summary: Photocatalytic technology utilizing sunlight as a driving force can convert solar energy into other energy sources for storage and use. CdS, as a typical reducing semiconductor, has attracted attention in photocatalysis due to its suitable bandgap and strong reducing ability. However, the photocatalytic performance of CdS is limited by carrier recombination and photocorrosion. Therefore, CdS has been widely developed as a reducing photocatalyst in constructing S-scheme heterojunctions to overcome these limitations.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Large deflection deformation behavior of a Zr-based bulk metallic glass for compliant spinal fixation application

Diao-Feng Li, Chun-Guang Bai, Zhi-Qiang Zhang, Hui-Bo Zhang, Nan Li, Jian Zhao

Summary: A novel compliant spinal fixation based on compliant mechanisms is designed to effectively reduce stress-shielding effect and adjacent segment degeneration (ASD), but it requires high properties of the used materials. Bulk metallic glasses (BMGs), as young biomaterials, demonstrate excellent comprehensive properties, making them attractive for compliant spinal fixation. In this study, the large deflection deformation behaviors of Zr61Ti2Cu25Al12 (at.%, ZT1) BMG beam were systematically investigated, including elastic, yielding, and plastic deformations. The theoretical nonlinear analytical solution curve predicts the load-deflection relation within the elastic deformation regime and assists in capturing the yielding event, serving as a powerful design tool for engineers. To accurately capture the beginning of the yielding event in biomedical implant applications, the concept of bending proof strength (sigma p,0.05%) with tiny permanent strain of 0.05% was proposed and determined, which is significant for setting the allowable operating limits of the basic flexible elements. The plastic deformation driven by the bending moment can be classified into two stages: the initial stage characterized by nucleation and intense interaction of shear bands, and the second stage dominated by the progressive propagation of shear bands and emergence of shear offsets. The plasticity of BMG beam structures depends on the BMG's inherent plastic zone size (rp), and when the half beam thickness is less than that of rp, the plastic deformation of BMGs behaves in a stable manner, effectively serving as the margin of safety.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Review Materials Science, Multidisciplinary

Recent progress in hydrogen: From solar to solar cell

Yanlin Li, Zhu Ma, Shanyue Hou, Qianyu Liu, Guangyuan Yan, Xiaoshan Li, Tangjie Yu, Zhuowei Du, Junbo Yang, Yi Chen, Wei You, Qiang Yang, Yan Xiang, Shufang Tang, Xuelin Yue, Meng Zhang, Wenfeng Zhang, Jian Yu, Yuelong Huang, Jiale Xie, Chun Tang, Yaohua Mai, Kuan Sun

Summary: This paper provides an overview of hydrogen progress from solar energy to solar cells, with a focus on photovoltaic-electrolysis and photoelectrochemical/photovoltaic systems. Both systems have achieved a solar-to-hydrogen efficiency of over 10% and show great potential for large-scale application. The challenges and opportunities in this field, including configuration design, electrode materials, and performance evaluation, are summarized. The paper also analyzes and presents perspectives on the potential commercial application and further scientific research for the development of solar-to-hydrogen.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Accelerating bainite transformation by concurrent pearlite formation in a medium Mn steel: Experiments and modelling

L. K. Huang, F. Liu, M. X. Huang

Summary: The bainite transformation in medium Mn steels has been experimentally and theoretically studied, and it has been found that the transformation kinetics is slow. However, the introduction of dislocations can significantly accelerate the transformation rate. A new "carbon depletion mechanism" is proposed to explain the role of dislocations in the acceleration of bainite transformation, and a physical model is developed to quantitatively understand the kinetics of bainite transformation.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Review Materials Science, Multidisciplinary

The vital application of rare earth for future high-performance electromagnetic wave absorption materials: A review

Jing Qiao, Lutong Li, Jiurong Liu, Na Wu, Wei Liu, Fan Wu, Zhihui Zeng

Summary: Rare earth plays a crucial role in electromagnetic wave absorption materials, and the strategies of doping rare earth elements and constructing rare earth oxide composites are important for the fabrication of high-efficiency electromagnetic wave absorption materials. This review provides a comprehensive summary of the research background, classification, features, progress, and future development of rare earth electromagnetic wave absorption materials, offering guidance for future development.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Evolution of medium-range order and its correlation with magnetic nanodomains in Fe-Dy-B-Nb bulk metallic glasses

Jiacheng Ge, Yao Gu, Zhongzheng Yao, Sinan Liu, Huiqiang Ying, Chenyu Lu, Zhenduo Wu, Yang Ren, Jun-ichi Suzuki, Zhenhua Xie, Yubin Ke, Jianrong Zeng, He Zhu, Song Tang, Xun-Li Wang, Si Lan

Summary: Fe-based metallic glasses are promising materials in the fields of advanced magnetism and sensors. This study proposes a novel approach to tailor the amorphous structure through liquid-liquid phase transition, and provides insights into the correlation between structural disorder and magnetic order. The results show that the liquid-liquid phase transition can induce more locally ordered nanodomains, leading to stronger exchange interactions and increased saturation magnetization. The increased local heterogeneity also enhances magnetic anisotropy, resulting in a better stress-impedance effect.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Optimization of multiple attenuation mechanisms by cation substitution in imidazolic MOFs-derived porous composites for superior broadband electromagnetic wave absorption

Hao Yu, Xin Kou, Xueqing Zuo, Ding Xi, Haijun Guan, Pengfei Yin, Lijia Xu, Yongpeng Zhao

Summary: Metal-organic frameworks derived composites are promising EMW absorbers. Cation substitution can improve their absorption performance by regulating morphology and atomic space occupation. However, the mechanisms of how cation substitution affects EMW absorption performance are still not well understood. In this study, imidazolic MOFs were fabricated and tailored by cation substitution strategy to prepare porous composites. The samples showed optimal reflection loss and effective absorption bandwidth values under low filling rate and thin thickness conditions. The intercoupling between multiple atoms and the porous structure introduced by cation substitution contribute to the improved absorption performance.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Augmenting reactive species over MgIn2S4-In2O3 hybrid nanofibers for efficient photocatalytic antibacterial activity

Lina Wang, Peiyi Yan, Huairui Chen, Zhuo Li, Shu Jin, Xiaoxiang Xu, Jun Qian

Summary: The narrow bandgap semiconductor MgIn2S4 has been grown onto In2O3 nanofibers using an in situ growing method. The resulting MgIn2S4-In2O3 hybrid nanofibers exhibit strong visible light absorption and intimate MgIn2S4/In2O3 heterointerfaces, leading to highly efficient photocatalytic disinfection of Escherichia coli.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)