4.7 Article

Mechanical Behavior and Failure Mechanisms of Carbon Fiber Composite Pyramidal Core Sandwich Panel after Thermal Exposure

期刊

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY
卷 29, 期 9, 页码 846-854

出版社

JOURNAL MATER SCI TECHNOL
DOI: 10.1016/j.jmst.2013.04.013

关键词

Composite; Thermal exposure; Mechanical properties; Sandwich panel

资金

  1. Major State Basic Research Development Program of China [2011CB610303]
  2. National Natural Science Foundation of China [90816024, 11272105]
  3. Research Fund for the Doctoral Program of Higher Education of China [20092302110006]

向作者/读者索取更多资源

An attempt has been made here to evaluate the effect of thermal exposure on the mechanical behavior and failure mechanisms of carbon fiber composite sandwich panel with pyramidal truss core under axial compression. Analytical formulae for the collapse strength of composite sandwich panel after thermal exposure were derived. Axial compression tests of composite laminates and sandwich panels after thermal exposure were conducted at room temperature to assess the degradation caused by the thermal exposure. Experimental results showed that the failure of sandwich panel are not only temperature dependent, but are time dependent as well. The decrease in residual compressive strength is mainly attributed to the degradation of the matrix and the degradation of fiber-matrix interface, as well as the formation of cracks and pores when specimens are exposed to high temperature. The measured failure loads obtained in the experiments showed reasonable agreement with the analytical predictions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Mechanical

Sound insulation performance of pyramidal truss core sandwich structure with frame

Yu-Zhou Wang, Li Ma

Summary: A new structure combining pyramidal truss core sandwich structure with frame is proposed in this paper, showing good mechanical properties and excellent acoustic performance at low frequency. An analytical model and finite element method are used to investigate the sound transmission loss (STL) performance, and the effects of incident wave angle and geometrical parameters on STL are discussed.

JOURNAL OF SANDWICH STRUCTURES & MATERIALS (2022)

Article Materials Science, Multidisciplinary

Sound Insulation Performance of Pyramidal Truss Core Cylindrical Sandwich Structure

Yu-Zhou Wang, Li Ma

Summary: This study investigates the acoustic performance and sound insulation applications of cylindrical sandwich structures. The theoretical model is established using the space-harmonic expansion method and the principle of virtual work, taking into account the vibro-acoustic coupling. The influence of various parameters on sound transmission loss is analyzed using both theoretical and finite element models.

ACTA MECHANICA SOLIDA SINICA (2022)

Article Engineering, Aerospace

Vibration of a Satellite Structure with Composite Lattice Truss Core Sandwich Panels

Ge Qi, Li Ma, Mayara Bortolotti Rossini, Kai-Uwe Schroeder

Summary: A novel satellite structure concept with composite lattice truss core sandwich panels is proposed in this investigation. Vibration tests and finite element analysis are conducted to determine the dynamic responses of the satellite structure, showing significant mass reduction and rapid assembly potential.

AIAA JOURNAL (2022)

Article Mechanics

3D lightweight double arrow-head plate-lattice auxetic structures with enhanced stiffness and energy absorption performance

Meng-Fu Guo, Hang Yang, Li Ma

Summary: This study proposes three novel 3D double arrowhead plate-lattice (DAPL) auxetic structures, and validates their enhanced stiffness and energy absorption capacity compared to truss-lattices through experiments and numerical analysis. The study also reveals that geometrical parameters have minimal influence on the elastic constants of these structures.

COMPOSITE STRUCTURES (2022)

Article Materials Science, Multidisciplinary

A lightweight rotationally arranged auxetic structure with excellent energy absorption performance

Wei-Ming Zhang, Zhen-Yu Li, Jin-Shui Yang, Li Ma, Zhuang Lin, Ruediger Schmidt, Kai-Uwe Schroeder

Summary: This study designed and characterized a novel two-dimensional lightweight rotationally arranged auxetic structure, and systematically investigated its elastic properties, plastic collapse stress, and specific energy absorption through theoretical calculations, numerical simulations, and experimental methods. The results showed that the structure has excellent energy absorption capacity and extreme conditions, allowing for optimization according to different requirements.

MECHANICS OF MATERIALS (2022)

Article Mechanics

Study on the mechanical properties of CFRP composite auxetic structures consist of corrugated sheets and tubes

Zhen-Yu Li, Xin-Tao Wang, Li Ma, Lin-Zhi Wu

Summary: Auxetic structures have attracted attention due to their unconventional behavior, but their low stiffness limits their application. By using high-performance carbon fiber reinforced polymer composites, a study shows that a composite structure consisting of corrugated sheets and tubes exhibits a negative Poisson's ratio effect in large compression strain range.

COMPOSITE STRUCTURES (2022)

Article Engineering, Mechanical

Analytical solutions of stress distribution within a hollow cylinder under contact interactions

Ge Qi, Chen-xi Liu, Kan Feng, Li Ma, Kai-Uwe Schroeder

Summary: This study provides exact analytical solutions for stress distribution within a bundled hollow cylinder under contact tractions, addressing the non-uniformity of stress distribution and developing maximum normalized stress maps for understanding stress distribution mechanisms.

INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES (2023)

Article Materials Science, Composites

Low-velocity impact damage and compression after impact behavior of CF/PEEK thermoplastic composite laminates

Ankang Liu, Yunlong Chen, Jiqiang Hu, Bing Wang, Li Ma

Summary: Impact resistance and damage tolerance are important factors in the design of composite structures. This study investigated the damage and failure mechanism of CF/PEEK composite laminates under low-velocity impact and compression after impact loading conditions. The effects of different stacking sequences on performance were compared. Nondestructive testing, digital image correlation, and scanning electron microscopy were used to analyze structural damage. A 3D damage model based on continuum damage mechanics was established and numerical simulations were conducted. The results validated the model and predicted the ultimate residual strength.

POLYMER COMPOSITES (2022)

Article Materials Science, Multidisciplinary

An efficient mechanical metamaterial component with alternating Poisson?s ratios and opposite orthogonal behaviors

Wei-Ming Zhang, Meng-Fu Guo, Jin-Shui Yang, Li Ma

Summary: This paper proposes a three-dimensional mechanical metamaterial with alternating Poisson's ratios and orthogonal opposite behaviors, which can be actuated mechanically to achieve signal output and logic control, and has important implications in mechanical computing and automatic control.

MATERIALS TODAY COMMUNICATIONS (2022)

Article Mechanics

CCCs off-axial orientation sensitivity analysis in hole pin-bearing failure via hierarchical multiscale simulation framework

Yanfeng Zhang, Linzhi Wu, Yuguo Sun, Li Ma, Shidong Pan, Bing Wang, Jian Xiong, Zhengong Zhou

Summary: In this study, the influence of off-axial orientation on the pin-bearing failure behavior of 3D orthogonal woven carbon/carbon composites was evaluated using a sequential multiscale modelling strategy and experimental validation. Hierarchical numerical simulation methodology was developed to obtain precise mechanical responses, and off-axial angle sensitivity analysis was conducted. The primary damage mechanism under off-axial cases was found to be a combination of material out-of-plane swelling and yarns in-plane rotation.

COMPOSITE STRUCTURES (2023)

Article Materials Science, Multidisciplinary

Shape memory mechanical metamaterials

Hang Yang, Nicholas D'Ambrosio, Peiyong Liu, Damiano Pasini, Li Ma

Summary: Shape memory materials can maintain temporary shapes without external constraints and revert to their permanent shape upon exposure to an external stimulus. This paper introduces a new approach using 3D-printable polymeric materials that do not rely on the shape memory effect to generate a robust shape memory response. The materials' shape reconfiguration and rapid recovery are solely governed by mechanical loading and temperature change, enabling programmable multistability, hyperelasticity, giant thermal deformations, and shape memory capacity.

MATERIALS TODAY (2023)

Article Engineering, Civil

Auxetic and failure characteristics of composite stacked origami cellular materials under compression

Zhen-Yu Li, Xin-Tao Wang, Li Ma, Lin-Zhi Wu, Lifeng Wang

Summary: The mechanical properties of stacked origami structures can be improved by introducing fiber reinforced composites. In this study, composite stacked origami structures with different stacking angles and thickness of origami sheets are designed and fabricated using a hot molding process. Finite element simulation and experimental compression tests are conducted to investigate their mechanical properties and auxetic characteristics. The effects of origami sheets thickness and stacking angles on the in-plane and out-of-plane auxetic characteristics of the structure are discussed. The failure modes of the structures during compression are analyzed, and their energy absorption capacity is compared with other honeycomb materials.

THIN-WALLED STRUCTURES (2023)

Article Engineering, Civil

Energy absorption characteristics of a lightweight auxetic honeycomb under low-velocity impact loading

Wei-Jing Wang, Wei-Ming Zhang, Meng-Fu Guo, Jin-Shui Yang, Li Ma

Summary: This study systematically investigates the dynamic response of windmill-like star-hexagon (WSH) honeycombs through theoretical calculations, numerical simulations, and experimental methods. The static and dynamic plateau stresses of WSH honeycombs are calculated, and critical velocities leading to different deformation modes are determined. Furthermore, the gradient design of WSH honeycombs is analyzed, and the energy absorption performance of gradient WSH honeycombs is explored through numerical simulations. It is found that WSH honeycombs exhibit better energy absorption capacity than conventional honeycombs under low-velocity impact loading, and the concave angle gradient design and thickness gradient design can further enhance their energy absorption performance.

THIN-WALLED STRUCTURES (2023)

Article Acoustics

Sound insulation performance of curved sandwich structure combined with acoustic metamaterials

Yu-Zhou Wang, Li Ma

Summary: Sandwich structures, especially curved ones, have garnered significant attention due to their superior stiffness and strength. These structures are essential for meeting mechanical loads as well as thermal, acoustic, optical, and electrical challenges. This paper proposes a composite structure that combines curved shell sandwich structures with acoustic metamaterials to achieve desired mechanical and acoustic properties. The theoretical model is established using the harmonic expansion method and principle of virtual work, and the sound transmission loss (STL) performance is studied along with the impact of structural geometry and material parameters.

JOURNAL OF VIBRATION AND CONTROL (2023)

Article Materials Science, Multidisciplinary

Free vibration and damping characteristics of carbon-fiber-reinforced sandwich cylindrical shells with 3D reentrant auxetic core

Yun-Long Chen, Li Ma

Summary: This article investigates the free vibration and damping characteristics of carbon fiber-reinforced sandwich cylindrical shells with 3D reentrant auxetic cores (3D RSCSs). Finite element analysis and theoretical predictions using the Rayleigh-Ritz method and third-order shear deformation theory are conducted. Experimental tests on all-composite 3D RSCSs specimens manufactured through hot press molding and interlocking assembly validate the predicted modal properties. Furthermore, the influences of fiber ply angles and geometric parameters on the natural frequency and damping loss factor are investigated.

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES (2023)

Article Materials Science, Multidisciplinary

Facet-dependent CuO/{010}BiVO 4 S-scheme photocatalyst enhanced peroxymonosulfate activation for efficient norfloxacin removal

Tongyu Han, Haifeng Shi, Yigang Chen

Summary: In this study, a novel S-scheme system was built by combining CuO with BiVO4 to activate PMS for antibiotic degradation. The system exhibited excellent visible light absorption performance and remarkable charge separation ability, suggesting its potential application in enhancing PMS activation and purifying antibiotics in water.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

PVDF/6H-SiC composite fiber films with enhanced piezoelectric performance by interfacial engineering for diversified applications

Linlin Zhou, Tao Yang, Chunyu Guo, Kang Wang, Enhui Wang, Laipan Zhu, Hailong Wang, Sheng Cao, Kuo-Chih Chou, Xinmei Hou

Summary: Piezoelectric silicon carbide (SiC) has been considered for various applications due to its superior properties. However, its brittleness and unsatisfactory piezoelectric response have limited its use. In this study, PVDF/6H-SiC composite fiber films were fabricated and used for assembling high-performance energy harvesters and sensors. The results showed significant improvements in piezoelectric response and sensitivity compared to pure PVDF films. First-principles calculation and finite element analysis confirmed the effect of SiC nanoparticles on the composite film.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Precipitation transformation pathway and mechanical behavior of nanoprecipitation strengthened Fe-Mn-Al-C-Ni austenitic low-density steel

Y. F. An, X. P. Chen, L. Mei, P. Ren, D. Wei, W. Q. Cao

Summary: This study systematically investigates the precipitation sequence of Fe-28Mn-11Al-1C-5Ni austenitic low-density steel and its influence on mechanical properties. The results reveal the transformation pathway of kappa' -carbides and B2 particles under different aging conditions. This research is meaningful for guiding the design of new generation dual-nano precipitation austenitic lightweight steel.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Modulating oxygen vacancy concentration for selective growth of semiconducting single-walled carbon nanotubes with narrow diameters

Lei Yang, Tingkai Zhao, Abdul Jalil, Huijun Luo, Tao Jiang, Yuan Shu, Yazhou Yin, Weiyu Jia

Summary: In this study, a strategy utilizing oxygen vacancy concentration modulation was used to successfully grow semiconducting single-walled carbon nanotubes (s-SWCNTs) with narrow diameters. The Fe0.01Mg0.99O/CeO2(3) catalyst was employed to provide oxygen vacancies, allowing for selective etching of chemically active carbon nanotube caps during the growth process. The optimized conditions resulted in high purity s-SWCNTs with uniform diameters.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Letter Materials Science, Multidisciplinary

Corrosion-resistant chromium steels for oil and gas pipelines can suffer from very severe pitting corrosion by a sulfate-reducing bacterium

Lingjun Xu, Pruch Kijkla, Sith Kumseranee, Suchada Punpruk, Tingyue Gu

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Polydopamine wrapped polyaniline nanosheets: Synthesis and anticorrosion application for waterborne epoxy coatings

X. P. Hu, Y. H. Zhang, C. B. Liu, H. Z. Cui

Summary: In this study, a novel polyaniline (PANI) nanosheet with barrier and passivation functions was synthesized, and its interaction with polymeric resin was enhanced by polydopamine (PDA) wrapping. The composite coating with incorporated PANI@PDA nanosheets showed improved corrosion resistance by providing a longer penetration path and inducing the formation of a passivation film on the metal substrate.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

MXene@Co hollow spheres structure boosts interfacial polarization for broadband electromagnetic wave absorption

Yan Zhang, Xuehua Liu, Zhiqiang Guo, Chenyu Jia, Feng Lu, Zirui Jia, Guanglei Wu

Summary: In this study, a self-assembling-etching-anchoring growth method was proposed to prepare MXene@Co electromagnetic wave absorbing materials. The hollow structure design and surface anchored growth of magnetic Co particles significantly enhanced the wave absorption performance of the absorber.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Review Materials Science, Multidisciplinary

Recent progress in CdS-based S-scheme photocatalysts

Yajing Ren, Yunfeng Li, Guixu Pan, Ning Wang, Yan Xing, Zhenyi Zhang

Summary: Photocatalytic technology utilizing sunlight as a driving force can convert solar energy into other energy sources for storage and use. CdS, as a typical reducing semiconductor, has attracted attention in photocatalysis due to its suitable bandgap and strong reducing ability. However, the photocatalytic performance of CdS is limited by carrier recombination and photocorrosion. Therefore, CdS has been widely developed as a reducing photocatalyst in constructing S-scheme heterojunctions to overcome these limitations.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Large deflection deformation behavior of a Zr-based bulk metallic glass for compliant spinal fixation application

Diao-Feng Li, Chun-Guang Bai, Zhi-Qiang Zhang, Hui-Bo Zhang, Nan Li, Jian Zhao

Summary: A novel compliant spinal fixation based on compliant mechanisms is designed to effectively reduce stress-shielding effect and adjacent segment degeneration (ASD), but it requires high properties of the used materials. Bulk metallic glasses (BMGs), as young biomaterials, demonstrate excellent comprehensive properties, making them attractive for compliant spinal fixation. In this study, the large deflection deformation behaviors of Zr61Ti2Cu25Al12 (at.%, ZT1) BMG beam were systematically investigated, including elastic, yielding, and plastic deformations. The theoretical nonlinear analytical solution curve predicts the load-deflection relation within the elastic deformation regime and assists in capturing the yielding event, serving as a powerful design tool for engineers. To accurately capture the beginning of the yielding event in biomedical implant applications, the concept of bending proof strength (sigma p,0.05%) with tiny permanent strain of 0.05% was proposed and determined, which is significant for setting the allowable operating limits of the basic flexible elements. The plastic deformation driven by the bending moment can be classified into two stages: the initial stage characterized by nucleation and intense interaction of shear bands, and the second stage dominated by the progressive propagation of shear bands and emergence of shear offsets. The plasticity of BMG beam structures depends on the BMG's inherent plastic zone size (rp), and when the half beam thickness is less than that of rp, the plastic deformation of BMGs behaves in a stable manner, effectively serving as the margin of safety.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Review Materials Science, Multidisciplinary

Recent progress in hydrogen: From solar to solar cell

Yanlin Li, Zhu Ma, Shanyue Hou, Qianyu Liu, Guangyuan Yan, Xiaoshan Li, Tangjie Yu, Zhuowei Du, Junbo Yang, Yi Chen, Wei You, Qiang Yang, Yan Xiang, Shufang Tang, Xuelin Yue, Meng Zhang, Wenfeng Zhang, Jian Yu, Yuelong Huang, Jiale Xie, Chun Tang, Yaohua Mai, Kuan Sun

Summary: This paper provides an overview of hydrogen progress from solar energy to solar cells, with a focus on photovoltaic-electrolysis and photoelectrochemical/photovoltaic systems. Both systems have achieved a solar-to-hydrogen efficiency of over 10% and show great potential for large-scale application. The challenges and opportunities in this field, including configuration design, electrode materials, and performance evaluation, are summarized. The paper also analyzes and presents perspectives on the potential commercial application and further scientific research for the development of solar-to-hydrogen.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Accelerating bainite transformation by concurrent pearlite formation in a medium Mn steel: Experiments and modelling

L. K. Huang, F. Liu, M. X. Huang

Summary: The bainite transformation in medium Mn steels has been experimentally and theoretically studied, and it has been found that the transformation kinetics is slow. However, the introduction of dislocations can significantly accelerate the transformation rate. A new "carbon depletion mechanism" is proposed to explain the role of dislocations in the acceleration of bainite transformation, and a physical model is developed to quantitatively understand the kinetics of bainite transformation.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Review Materials Science, Multidisciplinary

The vital application of rare earth for future high-performance electromagnetic wave absorption materials: A review

Jing Qiao, Lutong Li, Jiurong Liu, Na Wu, Wei Liu, Fan Wu, Zhihui Zeng

Summary: Rare earth plays a crucial role in electromagnetic wave absorption materials, and the strategies of doping rare earth elements and constructing rare earth oxide composites are important for the fabrication of high-efficiency electromagnetic wave absorption materials. This review provides a comprehensive summary of the research background, classification, features, progress, and future development of rare earth electromagnetic wave absorption materials, offering guidance for future development.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Evolution of medium-range order and its correlation with magnetic nanodomains in Fe-Dy-B-Nb bulk metallic glasses

Jiacheng Ge, Yao Gu, Zhongzheng Yao, Sinan Liu, Huiqiang Ying, Chenyu Lu, Zhenduo Wu, Yang Ren, Jun-ichi Suzuki, Zhenhua Xie, Yubin Ke, Jianrong Zeng, He Zhu, Song Tang, Xun-Li Wang, Si Lan

Summary: Fe-based metallic glasses are promising materials in the fields of advanced magnetism and sensors. This study proposes a novel approach to tailor the amorphous structure through liquid-liquid phase transition, and provides insights into the correlation between structural disorder and magnetic order. The results show that the liquid-liquid phase transition can induce more locally ordered nanodomains, leading to stronger exchange interactions and increased saturation magnetization. The increased local heterogeneity also enhances magnetic anisotropy, resulting in a better stress-impedance effect.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Optimization of multiple attenuation mechanisms by cation substitution in imidazolic MOFs-derived porous composites for superior broadband electromagnetic wave absorption

Hao Yu, Xin Kou, Xueqing Zuo, Ding Xi, Haijun Guan, Pengfei Yin, Lijia Xu, Yongpeng Zhao

Summary: Metal-organic frameworks derived composites are promising EMW absorbers. Cation substitution can improve their absorption performance by regulating morphology and atomic space occupation. However, the mechanisms of how cation substitution affects EMW absorption performance are still not well understood. In this study, imidazolic MOFs were fabricated and tailored by cation substitution strategy to prepare porous composites. The samples showed optimal reflection loss and effective absorption bandwidth values under low filling rate and thin thickness conditions. The intercoupling between multiple atoms and the porous structure introduced by cation substitution contribute to the improved absorption performance.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Augmenting reactive species over MgIn2S4-In2O3 hybrid nanofibers for efficient photocatalytic antibacterial activity

Lina Wang, Peiyi Yan, Huairui Chen, Zhuo Li, Shu Jin, Xiaoxiang Xu, Jun Qian

Summary: The narrow bandgap semiconductor MgIn2S4 has been grown onto In2O3 nanofibers using an in situ growing method. The resulting MgIn2S4-In2O3 hybrid nanofibers exhibit strong visible light absorption and intimate MgIn2S4/In2O3 heterointerfaces, leading to highly efficient photocatalytic disinfection of Escherichia coli.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)