4.6 Article

Molecular design of copolymers based on polyfluorene derivatives for Bulk-heterojunction-type solar cells

期刊

JOURNAL OF MATERIALS SCIENCE
卷 48, 期 3, 页码 1205-1213

出版社

SPRINGER
DOI: 10.1007/s10853-012-6861-9

关键词

-

资金

  1. National Natural Science Foundation of China [21073144]
  2. Natural Science Foundation Project of CQ CSTC [CSTC, 2009BB4104]
  3. Fundamental Research Funds for the Central Universities [XDJK2010B009]

向作者/读者索取更多资源

Poly{[2,7-(9,9'-dihexylfluorene)]-alt-[4,7-di(thiophen-2-yl)benzo[c][1, 2, 5]thiadiazole]} (PFDTBT) with low band gap was reported as an intriguing and promising donor in Bulk-heterojunction-type solar cells. In this paper, based on the structure of PFDTBT, three new kinds of donor materials: poly{[2,7-(9,9'-dihexylfluorene)]-alt-[4,7-di(thiophen-2-yl)-[1, 2, 5]thiadiazolo[3,4-d]pyridazine]} (PFDTTDP), poly{[2,7-(9,9'-dihexyloxyfluorene)]-alt-[4,7-di(thiophen-2-yl)-[1, 2, 5]thiadiazolo[3,4-d]pyridazine]} (POFDTTDP), and poly{[2,6-(4,4-dihexyl)-4H-cyclopenta[2,1- b;3,4-b']dithiophene)-alt-[4-(1,3,4-thiadiazol-2-yl)-7-(thiophen-2-yl)[1, 2, 5]thiadiazolo[3,4-d]pyridazine]} (PCPTTTDP), were designed and computed by density function theory (DFT). The electronic, optical and photovoltaic properties, and charge transport rates were investigated. The reorganization energies for holes and electrons are around 0.11 and 0.08 eV, respectively. It indicates that PFDTTDP, POFDTTDP, and PCPTTTDP are good candidates for donor material. Especially, when 6,6-phenyl-C61-butyric acid methyl ester (PC61BM) functions as acceptor, PCPTTTDP has the most appropriate highest occupied molecular orbital and lowest unoccupied molecular orbital energy, and has the broadest absorption in the near-infrared region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据