4.6 Article

Graphene-reinforced epoxy resin with enhanced atomic oxygen erosion resistance

期刊

JOURNAL OF MATERIALS SCIENCE
卷 48, 期 6, 页码 2416-2423

出版社

SPRINGER
DOI: 10.1007/s10853-012-7028-4

关键词

-

资金

  1. Beijing Municipal Commission of Education
  2. Ministry of Education of China
  3. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

Atomic oxygen (AO) is a dominant component of the low earth orbit and can erode most spacecraft material. We demonstrated the application of graphene to enhance AO erosion resistance of spacecraft polymers. Graphene-reinforced epoxy resin nanocomposites were prepared by solidification of epoxy resin in solution with dispersed graphene flakes and their AO erosion resistance was investigated in a plasma-type ground-based AO effects simulation facility. The nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. Results based on erosion kinetics revealed that a 46 % decrease in mass loss and a 47 % decrease in erosion yield were achieved by addition of only 0.5 wt% of graphene. Further analysis of the surface morphology and composition showed that the graphene nanoflakes could serve as barriers to protect underneath from AO erosion. Thus, this approach provides a novel route for improving durability and reliability of spacecraft material, especially polymers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据