4.6 Article

Numerical simulation on syphonage effect of laval nozzle for low pressure cold spray system

期刊

JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
卷 214, 期 11, 页码 2497-2504

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jmatprotec.2014.05.014

关键词

Low pressure cold spray; Syphonage effect; Laval nozzle; Computational Simulation

向作者/读者索取更多资源

Instead of injected by high pressure powder feeder, powders can be drawn into the nozzle by syphonage effect generated by supersonic gas flow in low pressure cold spray. This characteristic makes low pressure cold spray conveniently for on-site operation. However, no data have ever been reported on the relationship between the nozzle structures and the gas flow in the powder feeder pipe. In this paper, a CFD software (STAR CCM+) was used to calculate the gas flow in nozzle of the DYMET 413 commercial low pressure cold spray system. Variation of structures and process parameters based on the commercial system were also investigated. The syphonage effect is strongly influenced by the powder feeding location, the temperature and pressure in prechamber has little effect on syphonage effect in powder feeder pipe. The syphonaged gas will decelerate the gas velocity and low down the gas temperature in nozzle, so it is best to control the mass flow rate of powder feeding gas by selecting the location. One of the disadvantages is that the particles will collide with the nozzle wall which makes the nozzle a short service life. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据