4.6 Article

Influence of excitation frequency on structural and electrical properties of spray pyrolyzed CuInS2 thin films

期刊

JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
卷 214, 期 9, 页码 1879-1885

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jmatprotec.2014.04.005

关键词

Copper indium sulfide; Ultrasonic spray pyrolysis; Chalcopyrite film; Solar cells; Nozzle frequency

资金

  1. Republic of Turkey Ministry of Science, Industry and Technology [01072.STZ.2011-2]

向作者/读者索取更多资源

This paper reports the cost effective deposition of the copper indium sulfide (CuInS2) thin films under atmospheric conditions via ultrasonic spray pyrolysis. Structural and electrical properties of these films have been tailored by controlling the nozzle excitation frequency and the solution loading. Smoother films have been obtained via 120 kHz excitation frequency compare to the 48 kHz. Band gap energy of the films has also been tailored via excitation frequency. UV-vis-NIR analysis revealed that films deposited at 48 kHz excitation frequency had lower band gap energies. Although, both excitation frequencies resulted chalcopyrite structure, crystallinity of the CuInS2 films was better for 120 kHz. On the other hand, better optical absorption in visible and near infrared region was observed at 48 kHz. Moreover, room temperature electrical conductivity of the samples deposited at 48 kHz excitation frequency was higher than that of samples deposited at 120 kHz. Temperature dependent electrical conductivity data showed that variable range hopping mechanism can be used to explain the conduction of spray pyrolyzed CuInS2 thin films. Electrical mobility as high as 48 cm(2)/Vs has been observed for the sample deposited from 0.51 ml/cm(2) loading at 48 kHz excitation frequency. This value is very close to the mobility of vacuum deposited thin films like amorphous silicon, which is one of the most commonly used semiconductor in electronic and energy applications. (C) 2014 Elsevier B.V. All rights reserved,

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据