4.6 Article

Extension of Oxley's predictive machining theory for Johnson and Cook flow stress model

期刊

JOURNAL OF MATERIALS PROCESSING TECHNOLOGY
卷 209, 期 12-13, 页码 5305-5312

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jmatprotec.2009.03.020

关键词

Oxley's theory; Analytical modeling; Orthogonal cutting; Flow stress; Machining

向作者/读者索取更多资源

This paper presents an extension of Oxley's predictive analytical model for forces. temperatures and stresses at primary (shear zone) and secondary (tool-chip interface zone) deformation zone for Johnson and Cook now stress model. The effect of strain in addition to strain-rate and temperature at tool-chip interface, which is ignored by many researchers, is considered in the present analysis. The extension is made inline with Oxley's predictive machining theory by introducing the term n(eq) for Johnson and Cook material flow stress model. The term n(eq) becomes strain hardening exponent (n) for power law flow stress model used by Oxley and can be found for other material models too Johnson and Cook flow stress model that considers the effect of strain, strain-rate, and temperature on material property is widely used nowadays in finite element method simulation and analytical modeling due to its simple form and easy to use. The extension of Oxley's theory is verified for orthogonal cutting test data from the available literature for 0.38% carbon steel [Oxley, P.L.B., 1989. The Mechanics of Machining: An Analytical Approach to Assessing Machinability. Ellis Horwood Ltd., England] and AISI 1045 steel [Ivester, R.W., Kennedy, M.. Davies, M., Stevenson, R., Thiele, J., Furness, R., Athavale, S., 2000. Assessment of machining models: progress report. Machining Science and Technology 4, 511-538] and found in good agreement. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据