4.5 Article

Synthesis of CdS multipods from cadmium xanthate in ethylenediamine solution

期刊

PARTICUOLOGY
卷 19, 期 -, 页码 45-52

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.partic.2014.04.009

关键词

Nanostructured materials; Chemical synthesis; Microstructure; Transmission electron microscopy

资金

  1. National Natural Science Foundation of China [51372117]
  2. Natural Science Foundation of Jiangsu Province [BK20131347]
  3. Jiangsu Funds for Distinguished Young Scientists [BK2012035]

向作者/读者索取更多资源

CdS nanocrystals of various shapes were synthesized by using cadmium ethyldithiocarbonatio (xanthate) as a single precursor under solvothermal condition. The reaction temperature, cadmium concentration, and solvents determine the CdS morphology. Multipodal CdS structures of different fractions of all particles were obtained at temperatures ranging from 100 to 180 degrees C with the corresponding precursor concentrations in ethylenediamine (EDA) solution. This approach is different from that reported in the literature, where EDA is regarded as a solvent favorable to the formation of CdS nanorods instead of pods. Uniform CdS multipods were prepared at 160 degrees C with 1.0 g of cadmium xanthate. The formation of CdS multipods in EDA solution may be attributed to a synergistic effect between the reaction temperature and Cd concentration, i.e., thermodynamically and kinetically controlled growth of the CdS wurtzite (WZ) and zinc blende (ZB) phases, as confirmed by the structural characterization of the component CdS crystals. EDA and xanthate ligands act as co-assisted capping agents in the growth of CdS multipods. When using N,N-dimethylformamide (DMF) and ethylene glycol (EG) as solvents, the CdS appears as triangular particles and flower-like microspheres assembled by polyhedrons, respectively. (C) 2014 Published by Elsevier B.V. on behalf of Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据