4.3 Article

An acidic pH-triggered polymeric micelle for dual-modality MR and optical imaging

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 20, 期 26, 页码 5454-5461

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0jm00317d

关键词

-

资金

  1. Ministry of Education, Science and Technology, Republic of Korea [2009k001595]

向作者/读者索取更多资源

A dual-modality imaging probe was developed for magnetic resonance imaging (MRI) and optical imaging, based on a Fe3O4-encapsulated pH-responsive block copolymer, which was conjugated with a red fluorescent dye Sulforhodamine 101 (SR101). The block copolymer, containing methoxy poly(ethylene glycol) (PEG) as a hydrophilic segment and poly(beta-amino ester) (PAE) with ionizable tertiary amine groups on its backbone as a pH-responsive segment, can be dissolved in response to an acidic pH environment, or form self-assembled micelles in aqueous media at the physiological pH (similar to pH 7.4) due to the hydrophobic deionized PAE segment acting as a micellar core. The polymeric micelle conjugated with SR101 was found to have a red-fluorescent emission at 612 nm, a sharp pH transition of pH 6.8-7.0, indicating that it can be an ideal pH-triggered carrier in response to the acidic biological environment. Subsequently, the Fe3O4-encapsulated micelle was evaluated by dynamic light scattering (DLS), cryogenic transmission electron microscope (cryo-TEM), and pH-dependent Fe3O4 release. The confocal laser scanning microscopy (CLSM) observation demonstrated the cellular uptake of SR101-labeled polymeric micelles by breast cancer cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据