4.4 Article

Effect of chlorine on volatilization of Na, K, Pb, and Zn compounds from municipal solid waste during gasification and melting in a shaft-type furnace

期刊

出版社

SPRINGER
DOI: 10.1007/s10163-009-0265-1

关键词

Municipal solid wastes; Low-boiling-point metals; Gasification and melting furnace; Thermodynamic equilibrium calculation

向作者/读者索取更多资源

In the present work, a shaft-type furnace model in which the furnace column is divided into multiple cells was proposed and equilibrium reaction calculation software was used to describe the model. The model was used to study the effects of gasification and melting conditions such as temperature, oxygen partial pressure, and chlorine content on the volatilization behaviors of the low-boiling-point metals Na, K, Pb, and Zn during the gasification and melting process of municipal solid waste in a shaft-type furnace. Consequently, the volatilization ratios of Na, K, Pb, and Zn compounds in the exhaust gas from a pilot plant shaft-type furnace were found to be in good agreement with the calculation results, and the Na, K, Pb, and Zn compounds were volatilized mainly as metal chlorides in the temperature range up to approximately 1173 K. With a further rise in temperature, these low-boiling point metals were volatilized as metallic forms. It was found that almost 100% of Pb and Zn compounds were volatilized regardless of the chlorine content in municipal solid waste; in contrast, the volatilization rates of Na and K increased when the chlorine content increased. Finally, Na, K, Pb, and Zn compounds were converted from reduced metals to metal chlorides such as NaCl, KCl, PbCl2, and ZnCl2 with an increase in the ratio of chlorine to each metal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据