4.4 Article

Full utilization of a mass spectrometer using on-demand sharing with multiple LC units

期刊

JOURNAL OF MASS SPECTROMETRY
卷 47, 期 8, 页码 1074-1082

出版社

WILEY-BLACKWELL
DOI: 10.1002/jms.3061

关键词

LC; MS; staggered; parallel; multiplex; high-throughput; quantification

向作者/读者索取更多资源

The applicability of liquid chromatographymass spectrometry (LC/MS) is often limited by throughput. The sharing of a mass spectrometer with multiple LCs significantly improves throughput; however, the reported systems have not been designed to fully utilize the MS duty cycle, and as a result to achieve maximum throughput. To fully utilize the mass spectrometer, the number of LC units that a MS will need to recruit is application dependent and could be significantly larger than the current commercial or published implementations. For the example of a single analyte, the number may approach the peak capacity to a first degree approximation. Here, the construction of a MS system that flexibly recruits any number of LC units demanded by the application is discussed, followed by the method to port a previously developed LC/MS method to the system to fully utilize a mass spectrometer. To demonstrate the performance and operation, a prototypical MS system of eight LC units was constructed. When 1-min chromatographic separations were performed in parallel on the eight LCs of the system, the average LC/MS analysis time per sample was 10.5 s when applied to the analysis of samples in 384-well plate format. This system has been successfully used to conduct large-volume biochemical assays with the analysis of a variety of molecular entities in support of drug discovery efforts. Allowing the recruitment of the number of LC units appropriate for a given application, this system has the potential to be a plug-and-play system to fully utilize a mass spectrometer. Copyright (c) 2012 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据