4.0 Article

Onset of time-dependence in a double-gyre circulation: Barotropic basin modes versus classical baroclinic modes

期刊

JOURNAL OF MARINE RESEARCH
卷 68, 期 2, 页码 215-236

出版社

SEARS FOUNDATION MARINE RESEARCH
DOI: 10.1357/002224010793721424

关键词

-

资金

  1. NSF [OCE-0423975, OCE-042975, OCE-0850416]

向作者/读者索取更多资源

Using a fully-implicit high-resolution two-layer quasi-geostrophic model combined with pseudo-arclength continuation methods, we perform a bifurcation analysis of double-gyre ocean flows to study their initial oscillatory instabilities. In this model, both wind- and thermally-forced flows can be represented. We demonstrate that on the branch of anti-symmetric steady-state solutions the ratio, Omega. of the flow advective speed to the long internal Rossby wave speed determines the type of oscillatory modes to first become unstable. This is the same nondimensional parameter that controls the shape of the geostrophic contours in the linear limit of the circulation. For large values of Omega, the first Hopf bifurcations correspond to the classical baroclinic modes with inter-monthly time periods arising from shear instability of the flow. For small values of Omega, the first Hopf bifurcations correspond instead to barotropic Rossby modes with shorter, monthly periods arising from mixed barotropic-baroclinic instability of the flow. By considering both a wind-forced and a thermally-forced ocean, we show that this is a robust feature that does not depend on the type of forcing driving the circulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据