4.7 Article Proceedings Paper

Process energy analysis and optimization in selective laser sintering

期刊

JOURNAL OF MANUFACTURING SYSTEMS
卷 31, 期 4, 页码 429-437

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jmsy.2012.07.004

关键词

Additive manufacturing (AM); Selective laser sintering (SLS); Laser energy; Convex hull; Total area of sintering (TAS)

向作者/读者索取更多资源

Additive manufacturing (AM) processes are increasingly being used to manufacture complex precision parts for the automotive, aerospace and medical industries. One of the popular AM processes is the selective laser sintering (SLS) process which manufactures parts by sintering metallic, polymeric and ceramic powder under the effect of laser power. The laser energy expenditure of SLS process and its correlation to the geometry of the manufactured part and the SLS process parameters, however, have not received much attention from AM/SLS researchers. This paper presents a mathematical analysis of the laser energy required for manufacturing simple parts using the SLS process. The total energy expended is calculated as a function of the total area of sintering (TAS) using a convex hull based approach and is correlated to the part geometry, slice thickness and the build orientation. The TAS and laser energy are calculated for three sample parts and the results are provided in the paper. Finally, an optimization model is presented which computes the minimal TAS and energy required for manufacturing a part using the SLS process. (C) 2012 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据