4.5 Article

Selective Laser Melting Additive Manufacturing of Novel Aluminum Based Composites With Multiple Reinforcing Phases

出版社

ASME
DOI: 10.1115/1.4028925

关键词

-

资金

  1. National Natural Science Foundation of China [51322509]
  2. Outstanding Youth Foundation of Jiangsu Province of China [BK20130035]
  3. Program for New Century Excellent Talents in University [NCET-13-0854]
  4. Science and Technology Support Program (The Industrial Part), Jiangsu Provincial Department of Science and Technology of China [BE2014009-2]
  5. Program for Distinguished Talents of Six Domains in Jiangsu Province of China [2013-XCL-028]
  6. Fundamental Research Funds for the Central Universities [NE2013103, kfjj201441]
  7. Foundation of Graduate Innovation Center in NUAA

向作者/读者索取更多资源

The selective laser melting (SLM), due to its unique additive manufacturing (AM) processing manner and laser-induced nonequilibrium rapid melting/solidification mechanism, has a promising potential in developing new metallic materials with tailored performance. In this work, SLM of the SiC/AlSi10Mg composites was performed to prepare the Al-based composites with the multiple reinforcing phases. The influence of the SLM processing parameters on the constitutional phases, microstructural features, and mechanical performance (e.g., densification, microhardness, and wear property) of the SLM-processed Al-based composites was studied. The reinforcing phases in the SLM-processed Al-based composites included the unmelted micron-sized SiC particles, the in situ formed micron-sized Al4SiC4 strips, and the in situ produced submicron Al4SiC4 particles. As the input laser energy density increased, the extent of the in situ reaction between the SiC particles and the Al matrix increased, resulting in the larger degree of the formation of Al4SiC4 reinforcement. The densification rate of the SLM-processed Al-based composite parts increased as the applied laser energy density increased. The sufficiently high density (similar to 96% theoretical density (TD)) was achieved for the laser linear energy density larger than 1000 J/m. Due to the generation of the multiple reinforcing phases, the elevated mechanical properties were obtained for the SLM-processed Al-based composites, showing a high microhardness of 214 HV0.1, a considerably low coefficient of friction (COF) of 0.39, and a reduced wear rate of 1.56 x 10 x 5 mm 3 N-1 m(-1). At an excessive laser energy input, the grain size of the in situ formed Al4SiC4 reinforcing phase, both the strip-and particle-structured Al4SiC4 , increased markedly. The significant grain coarsening and the formation of the interfacial microscopic shrinkage porosity lowered the mechanical properties of the SLM-processed Al-based composites. These findings in the present work are applicable and/or transferrable to other laser-based powder processing processes, e.g., laser cladding, laser metal deposition, or laser engineered net shaping.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据