4.5 Article

Effects of crystallographic anistropy on orthogonal micromachining of single-crystal aluminum

出版社

ASME
DOI: 10.1115/1.2917268

关键词

-

向作者/读者索取更多资源

Anisotropy of workpiece crystals has a significant effect in micromachining since the uncut chip thickness values used in micromachining are commensurate with characteristic dimensions of crystals in crystalline materials. This paper presents an experimental investigation on orthogonal micromachining of single-crystal aluminum at different crystallographic orientations for varying uncut chip thicknesses and cutting speeds using a diamond tool. Micromachining forces, specific energies, effective coefficient of friction, shear angles, shear stresses, and chip morphology were examined for six crystallographic orientations at uncut chip thicknesses ranging from 5 mu m to 20 mu m and cutting speeds ranging from 5 mm/s to 15 mm/s. Three distinct types of forces were observed, including steady (Type-I), bistable (Type-II), and fluctuating (Type-III) force signatures. The forces were seen to vary by as much as threefold with crystallographic orientation. Although the effect of cutting speed was small, the uncut chip thickness was seen to have a significant orientation-dependent effect on average forces. Chip morphology, analyzed under scanning electron microscopy, showed shear-front lamella, the periodicity of which was seen to vary with crystallographic orientations and uncut chip thicknesses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据