4.5 Article Proceedings Paper

Cutter-Workpiece Engagement Calculations by Parallel Slicing for Five-Axis Flank Milling of Jet Engine Impellers

出版社

ASME-AMER SOC MECHANICAL ENG
DOI: 10.1115/1.2927449

关键词

-

向作者/读者索取更多资源

Cutter-workpiece engagement maps, or cutting flute entry/exit locations as a function of height, are a requirement for prediction of cutting forces on the tool and workpiece in machining operations such as milling. This paper presents a new method of calculating tool-part intersection maps for the five-axis flank milling of jet engine impellers with tapered ball-end mills. The parallel slicing method (PSM) is a semi-discrete solid modeling technique written in C++ using the ACIS boundary representation solid modeling environment. The tool swept envelope is generated and intersected with the workpiece to obtain the removal volume. It is also subtracted from the workpiece to obtain the finished part. The removal volume is sliced into a number of parallel planes along a given axis, and the intersection curves between each tool move and plane are determined analytically. The swept area between successive tool positions is generated using the common tangent lines between intersection curves, and then removed from the workpiece. This deletes the material cut between tool moves, ensuring correct engagement conditions. Finally, the intersection curves are compared to the planar slices of the updated part, resulting in a series of arcs. The end points of these arcs are joined with linear segments this method, cutter-workpiece engagement maps are generated for a five-axis flant mill-maps are compared to those obtained from a benchmark cutter-workpiece engagement extraction method, which employs a fast, z-buffer technique. Overall, the PSM appears to obtain more accurate engagement zones, which should result in more accurate prediction of cutting forces. With the method's current configuration, however, the calculation time is longer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据