4.5 Article

Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles

期刊

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
卷 476, 期 -, 页码 157-165

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmmm.2018.09.089

关键词

Spinel; Magnetic nanoparticles; CoCexFe2-xO4; Sol-gel combustion; SEM/TEM

向作者/读者索取更多资源

In this present study, we made an attempt for the different concentration of rare earth element (REE) Cerium (Ce3+) doped cobalt ferrite (CoFe2O4) nanoparticles (NPs) were prepared by the simple sol-gel combustion technique. Cerium was successfully substituted into the spinel lattice without any distortion. It was analyzed the effect of Ce3+ ions doping on structural, morphological, magnetic properties and antibacterial activities using the various instrument techniques. Powder XRD and SEM along with EDX studies confirmed the pure phase formation Ce3+ doped CoFe2O4 NPs and spherical shaped agglomerated nanoparticles morphology without any other impurity. The well resolved broad peaks in the XRD pattern clearly indicated the nanosized, single phased, cubic spinal nature of these samples. There was a substantial decrease in the crystallite size on doping with Ce3+. A more in-depth morphological study was facilitated using the TEM and SAED analysis. TEM investigation revealed random shaped, sharp edged nanoparticles with a normally facetted morphology. The presence of distinctive diffractions spots on the SAED pattern indicated the formation of nanoparticles that are highly crystalline in nature. The magnetic response of the Ce3+ doped CoFe2O4 NPs was recorded at room temperature (RT) using the VSM technique. The magnetic properties have been seen to be altered by the addition of Ce3+ in the CoFe2O4 matrix. The decrease in the saturation magnetization (M-s, emu/g) with the increase in Ce3+ content rendered the synthesized sample applicable in field of antenna construction. This change will be also suitable for reducing the size of the antenna. The antibacterial activity of Ce3+ doped CoFe2O4 nanoparticles was found to be enhanced with increase in Ce3+ doping level as it cause a reduction in the grain size.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Textiles

Physicochemical and mechanical properties of electrospun polyurethane composite patch integrated with green synthesized cobalt nanoparticles for cardiac applications

Nurul Asyiqah Binti Mohamad Khidhir, Saravana Kumar Jaganathan, Ahmad Zahran Mohd Khudzari, Ahmad Fauzi Ismail

Summary: In this research, cardiac patches made from polyurethane and cobalt nanoparticles synthesized from green tea were fabricated and evaluated. The patches exhibited smaller diameter, hydrophilic surface, and enhanced strength compared to traditional polyurethane. These patches show promise for cardiac applications.

JOURNAL OF THE TEXTILE INSTITUTE (2022)

Article Materials Science, Textiles

Compatible properties and behaviour of dually loaded electrospun polyurethane bone tissue scaffolds

Mohan Prasath Mani, Saravana Kumar Jaganathan, Ahmad Fauzi bin Ismail, Ahmad Zahran Md Khudzari

Summary: This study fabricated composite based on polyurethane containing lemon grass oil and zinc nitrate using electrospinning technique, which showed excellent properties including lower diameter, hydrophobicity or hydrophilic nature, improved mechanical strength, reduced toxicity, and enhanced calcium deposition compared to PU. These developed nanocomposites are potential candidates for bone tissue engineering.

JOURNAL OF INDUSTRIAL TEXTILES (2022)

Article Chemistry, Physical

Investigation on the structural, optical, and magnetic features of Dy3+ and Y3+ co-doped Mn0.5Zn0.5Fe2O4 spinel ferrite nanoparticles

M. A. Almessiere, S. Guner, Y. Slimani, A. Baykal, Sagar E. Shirsath, A. Demir Korkmaz, R. Badar, A. Manikandan

Summary: Dy3+ and Y3+ ions co-doped Zn0.5Mn0.5Fe2O4 nanoparticles were synthesized through an ultrasonication approach to tune their structural and magnetic properties. The influence of the co-doping on the structural and magnetic characteristics was analyzed by X-ray diffraction and electron microscopy, showing changes in crystal structure and size.

JOURNAL OF MOLECULAR STRUCTURE (2022)

Article Engineering, Environmental

Functional Properties of Grapefruit Seed Extract Embedded Blend Membranes of Poly(vinyl alcohol)/Starch: Potential Application for Antiviral Activity in Food Safety to Fight Against COVID-19

Mallikarjunagouda B. B. Patil, Shridhar N. N. Mathad, Arun Y. Y. Patil, Anish Khan, Mahmoud Ali Hussein, Abeer M. M. Alosaimi, Abdullah M. M. Asiri, A. Manikandan, Mohammad Mujahid Ali Khan

Summary: The study prepared poly(vinyl alcohol) (PVA) and starch-based polymeric films with different concentrations of grapefruit seed extract (GSE). The films showed improved mechanical properties and antimicrobial efficacy when a small amount of GSE was incorporated.

JOURNAL OF POLYMERS AND THE ENVIRONMENT (2023)

Article Crystallography

Photocatalytic Degradation of Textile Orange 16 Reactive Dye by ZnO Nanoparticles Synthesized via Green Route Using Punica Granatum Leaf Extract

Salma A. A. Al-Zahrani, Mallikarjunagouda B. B. Patil, Shridhar N. N. Mathad, Arun Y. Y. Patil, Ahmed A. A. Otaibi, Najat Masood, Dorsaf Mansour, Anish Khan, A. Manikandan, Edi Syafri

Summary: The green synthesis approach using Punic granatum plant leaf extract successfully produced environmentally friendly zinc oxide nanoparticles. Characterization using various techniques revealed that the nanoparticles were crystalline, with an average diameter of 20 nm. The synthesized nanoparticles demonstrated effective photocatalytic oxidation of reactive dye in water, advancing the development of green photocatalysts for dye removal.

CRYSTALS (2023)

Article Chemistry, Physical

Biomass Mediated Synthesis of ZnO and ZnO/GO for the Decolorization of Methylene Blue under Visible Light Source

Salma Ahmed Al-Zahrani, Khalid Umar, Saleh Ali Tweib, Jebrel Abdeljawad M. Rashd, Saima Khan Afridi, Showkat Ahmad Bhawani, Ahmed Al Otaibi, Najat Masood, Dorsaf Mansour, Anish Khan, Manikandan Ayyar

Summary: In this study, zinc oxide (ZnO) and zinc oxide/graphene oxide (ZnO/GO) were successfully synthesized using Carica papaya leaf extract and oil palm empty fruit bunch biomass. The samples were characterized to understand their morphology, size, structural phase purity, functional groups and optical properties. The results showed the presence of various peaks and a red shift in the case of ZnO/GO. The synthesized materials exhibited nanosized particles and showed high decolorization efficiency for methylene blue.

CATALYSTS (2023)

Article Crystallography

Photocatalytic Azo Dye Degradation Using Graphite Carbon Nitride Photocatalyst and UV-A Irradiation

Salma A. Al-Zahrani, Mallikarjunagouda B. Patil, Shridhar N. Mathad, Arun Y. Patil, Ahmed Al Otaibi, Najat Masood, Dorsaf Mansour, Anish Khan, Vikas Gupta, Niraj S. Topare, Amita Somya, Manikandan Ayyar

Summary: The study explored the photocatalytic degradation of Acid Red 26 using graphitic carbon nitride (g-C3N4) catalyst and UV-A light. Both synthetic and actual municipal wastewater showed high clearance rates, although the degradation was slower in wastewater due to its complex chemical composition. Intermediate products were identified using liquid chromatography-mass spectrometry (LC-MS), and the importance of reactive species (h⁺ and O-2⁻) in the degradation process was demonstrated.

CRYSTALS (2023)

Article Engineering, Electrical & Electronic

Investigation on ammonia-free scalable cobalt-doped hexagonal boron nitride for environmental remediation

J. V. Annie Vinsla, P. Annie Vinosha, S. Vijayalakshmi, Belina Xavier, A. Muthukrishnaraj, Manikandan Ayyar, Mohamed Henini

Summary: In this study, ammonia-free hexagonal boron nitride (h-BN) nanocrystals were successfully synthesized using a cost-effective hydrothermal technique. The synthesized nanocrystals, incorporated with varying weight% of cobalt (Co), exhibited enhanced performance in terms of structural, optical, elemental, functional, and morphological properties. The 10% Co-doped h-BN nanocrystals showed superior catalytic activity, leading to a remarkable 99.4% degradation of the Methylene Blue (MB) dye within just 9 minutes.

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS (2023)

Article Chemistry, Physical

New xanthine oxidase inhibitor from white mulberry (Morus alba L.) - anti-gout prospective study

Suresh Antony, Rushika J. Mehta, Soosaimanickam Maria Packiam, Joseph Devadass Balthazar, Melvin A. Daniel, Lakshminarayanan Srimathi Priya, Manikandan Ayyar

Summary: Morus sp. (mulberry) has gained importance in recent years due to its phytochemical composition and beneficial effects on human health. The leaves of the mulberry plant contain significant amounts of glycosylated flavonols and chlorogenic acid, making it a potential alternative therapy for various ailments. This study found that the ethanolic extract of mulberry leaves showed higher xanthine oxidase (XO) inhibition, indicating its potential as an anti-gout agent. The total polyphenol content of the extract was found to be associated with its anti-gout property.

ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS (2023)

Article Chemistry, Multidisciplinary

Structural, optical and photovoltaic properties of V2O5/ZnO and reduced graphene oxide (rGO)-V2O5/ZnO nanocomposite photoanodes for dye-sensitized solar cells

C. Bhagya Lakshmi, S. Anna Venus, S. Velanganni, A. Muthukrishnaraj, Manikandan Ayyar, Mohamed Henini

Summary: This study investigates the use of V2O5/ZnO and rGO-V2O5/ZnO nanocomposites as photoanodes to improve the power conversion efficiency of dye-sensitized solar cells. The structural and electrical characteristics of these nanocomposites are analyzed, and it is found that they can significantly enhance the performance of the solar cells.

CARBON LETTERS (2023)

Article Chemistry, Multidisciplinary

Carbon based manganese oxide (MnO2, MnO2/MWCNT and MnO2/rGO) composite electrodes for high-stability Li-ion batteries

Pitcheri Rosaiah, Ponnusamy Divya, Sangaraju Sambasivam, Ammar M. Tighezza, V. Kalaivani, A. Muthukrishnaraj, Manikandan Ayyar, Theophile Niyitanga, Haekyoung Kim

Summary: MnO2 NWs/MWCNT and MnO2 NWs/rGO composites were synthesized using a hydrothermal method, showing high specific discharge capacity and excellent cycling stability.

CARBON LETTERS (2023)

Article Green & Sustainable Science & Technology

Nickel-Manganese bimetallic Selenide as an electrode for supercapcitor applications

S. Saranya, S. Dhanapandian, S. Suthakaran, Sankaranarayanan Nagarajan, N. Krishnakumar, S. Dinesh, A. Muthukrishnaraj, Ayyar Manikandan

Summary: Evolving efficient electrochemically active nanostructures from earth-abundant transition metals, such as nickel (Ni) and manganese (Mn), has gained significant interest for energy storage applications. In this study, Ni-Mn diselenide nanoparticles with spherical morphology were successfully synthesized using a simple hydrothermal method. The synthesized NiMnSe2 nanoparticles demonstrated a cubic phase and excellent electrochemical behavior, with a specific capacitance of 1490F/g.

SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS (2023)

Article Chemistry, Physical

In-situ synthesis of dinuclear Iron (III) complex; Crystal structure, DFT calculations, Hirshfield surface analysis, and molecular docking

Ghulam Abbas, Francisco C. Franco Jr, S. Janani, J. N. Cheerlin Mishma, A. Manikandan, S. Muthu, Christopher E. Anson

Summary: A new dimeric complex was synthesized through a one-pot reaction in MeOH and characterized by infrared spectroscopy, elemental analysis, and single crystal X-ray diffraction. The theoretical study and molecular docking analysis revealed the structural properties and potential biological activity of the complex.

JOURNAL OF MOLECULAR STRUCTURE (2024)

Article Chemistry, Physical

A baseline study of temporal and spatial variations of physico-chemical variables in Vellar estuary Parangipettai southeast of India

Suthagar Govindaraj, Saravanakumar Ayyapan, Poornima Durai, Priyanka Kandasamy, Loganathan Guganathan, Madhappan Santhamoorthy, Anbazhagan Murugan, Selvakumar Suthakaran, Subbarayan Sathiyamurthy, Manikandan Ayyar

Summary: The current study aims to collect baseline research data for the area near the Vellar estuary mangroves. Factors such as temperature, nitrate, pH, salinity, ammonia, inorganic phosphate, dissolved oxygen, and silicate play a key role in chemical and biological water reactions as well as the growth of flora and fauna in the estuary. The study reveals unique seasonal variations and an increasing trend in nutrient levels during the summer to monsoon seasons.

ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS (2023)

Article Chemistry, Applied

Fabrication and Characterization of Polycaprolactone with Retinoic Acid and Cerium Oxide for Anticancer Applications

Magda Alahmmar, Praseetha Prabhakaran, Saravana Jaganathan, Nik Ahmad Nizam Nik Malek

Summary: In this study, PCL composite electrospun nanofibers were fabricated and the processing parameters were optimized. The effects of solvents and polymer concentration on the morphology of the nanofibers were investigated. The nanofibers were characterized using various techniques. The drug-loaded nanofibers were considered as potential materials for drug delivery applications.

BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY (2023)

Article Materials Science, Multidisciplinary

Remote detection of bovine serum albumin (BSA) using cantilever beam magnetometer

Bibhutibhusan Nayak, S. Narayana Jammalamadaka

Summary: This article presents a method for remote detection of bovine serum albumin (BSA) using modified cantilever beam magnetometry (CBM). By combining a magnetostrictive Fe70Ga30 cantilever with optical detection technique, researchers were able to detect high concentrations of BSA remotely. The results of this study demonstrate the potential of this method in estimating the magnetostriction of thin films.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Influence of magnetic external field and particle size on the formation of a single domain state

Yu Hao, R. E. Camley, Z. Celinski

Summary: Magnetic particles have various applications and their magnetic state is determined by their size and the strength of an applied magnetic field. Numerical simulations were performed to study the effect of an applied field on the critical size of single-domain magnetic particles, and the critical field at which a particle becomes single-domain was determined.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Smart nanocomposite SrFe12O19/α or γ - Fe2O3 thin films with adaptive magnetic properties

Nitesh Singh, Naresh Kumar, Dharohar Sahadot, Anil Annadi, Vidyadhar Singh, Murtaza Bohra

Summary: The unique magnetic properties of FM/AFM and hard-FM/soft-FM nanocomposite thin films have significant relevance for numerous applications. The composition and performance of different magnetic phases in the nanocomposite films can be significantly affected by the laser ablation conditions and annealing temperature.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

A symmetric T-H shape wideband negative index metamaterial for 28-GHz millimeter-wave applications

Alya Ali Musaed, Samir Salem Al-Bawri, Khaled Aljaloud, Wazie M. Abdulkawi, Mohammad Tariqul Islam, Mandeep Jit Singh, Zaini Sakawi, Husam Hamid Ibrahim

Summary: This research presents a wideband tunable metamaterial for body-centric applications in the millimeter-wave frequency band. The proposed metamaterial has a wide operating frequency range and enhanced gain, making it suitable for improving the antenna performance in 5G wireless communication systems.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Structure and properties of NdCuGa3 single crystals

Binod K. Rai, Boris Maiorov, Krzysztof Gofryk, Patrick O'Rourke, Catherine Housley, Henry Ajo, Asraf Sawon, Arjun K. Pathak, Narayan Poudel, Qiang Zhang, Travis J. Williams, Matthias Frontzek

Summary: This manuscript reports on the structural and magnetic properties of NdCuGa3. The study confirmed the crystal structure and magnetic phase transition of NdCuGa3 using XRD, neutron diffraction, magnetization, and specific heat measurements. The neutron diffraction data further confirmed the antiferromagnetic phase of NdCuGa3.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

A multiferroic coupling mechanism in the polar interface region of GaN-ZnO heterojunction: A first-principle study

Haonan Li, Cong Li, Hailiang Huang, Guodong Hao, Fei Wang

Summary: The electronic structure and ferroelectric-ferromagnetic coupling properties of Y-doped and vacancy-containing GaN-ZnO heterojunctions are systematically investigated. The magnetism in vacancy-containing systems is generated by the spin polarization of unpaired electrons induced by cationic vacancies, while in Y-doped systems, bound magnetic polarons are formed by the orbital hybridization of s-state and d-state electrons of Y-doped elements.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Co-precipitation method followed by ultrafast sonochemical synthesis of aluminium doped M type BaFe11.4-xAlxCo0.6O19 hexaferrites for various applications

Muhammad Ijaz, Hafeez Ullah, Bandar Ali Al-Asbahi, Mati Ullah Khan, Zaheer Abbas, Sana Ullah Asif

Summary: M-type BaFe11.4-xAlxCo0.6O19 hexaferrites with Al3+ substitutions were synthesized using the co-precipitation method followed by Sonochemical process. The synthesized materials were characterized using XRD, FTIR, UV-vis spectroscopy, VSM, SEM, and LCR meter. The results showed that aluminum doping decreased the band gap and enhanced the magnetic and dielectric properties of the hexaferrites, making them suitable for various applications.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Magnons in the fan phase of anisotropic frustrated antiferromagnets

Oleg I. Utesov

Summary: The elementary excitations spectrum of anisotropic frustrated antiferromagnets in the fan phase is discussed. It is found that the low-energy part of the spectrum consists of a gapless phason branch with linear dispersion and a gapped optical branch corresponding to the fan structure amplitude oscillations. In the high-energy part of the spectrum, the excitations are similar to the magnons of the fully polarized phase.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Vapor bubbles departure frequency at ferrofluid boiling on a single nucleation site in a uniform horizontal magnetic field

Alexander Ya. Simonovskii, Alexander A. Yanovskii, Arthur R. Zakinyan

Summary: In this study, the departure frequency of vapor bubbles during boiling of ferrofluid in a horizontal magnetic field is experimentally investigated. Two methods, visual and inductive, are used to measure the frequency of bubble departure. The results show that the bubble departure frequency can decrease with increasing magnetic field strength and increase with increasing temperature of the heat-emitting surface. A linear stability analysis is conducted to analyze the influence of the magnetic field on the frequency of bubble formation during ferrofluid boiling.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Magnetic and transformation properties of Ni2MnGa combinatorically substituted with 5 at.% of transition elements from Cr to Cu - Experimental insight

Oleg Heczko, Michal Rames, Vit Kopecky, Petr Vertat, Michal Varga, Ladislav Straka

Summary: Heusler Ni-Mn-Ga alloys are multiferroic materials that exhibit magnetic shape memory (MSM) phenomena. By doping transition elements into Ni2MnGa alloys, the transformation temperatures can be modified and complex behaviors can be observed, such as the variation in saturation magnetization and the effects of elemental substitution on compound properties.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

DFT calculations for electronic and magnetic properties of full Heusler Fe2MnAs alloy in perfect and defect structures

Carlos Ariel Samudio Perez, Ariel Flaig de Marchi

Summary: This study investigates the electronic and magnetic properties of the Full-Heusler Fe2MnAs alloy using first-principles calculations. The alloy may form spontaneously and exhibits a ferromagnetic order and high spin-polarization. It can be transformed into a half-metal by contracting the lattice constant. Additionally, certain defects contribute to the spin-polarization of the alloy, making it a fully half-metallic material.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Enhancing electromagnetic properties through carbon Nanotube-Based polymer composites

Satish Geeri, Aditya Kolakoti, Prasadarao Bobbili

Summary: In this study, an electromagnetic wave-absorbing material was fabricated using a polymer composite material with fiber orientation and Multiwall Carbon Nanotubes as filler materials, along with a Perfect Electric Conducting material. The experiments demonstrated strong electromagnetic absorbing properties for the composites with PEC-coated and non-PEC-coated materials. Mechanical, thermal, and morphological analysis confirmed the similar trend in properties. CRITIC analysis helped identify the sequence order of sustaining properties for the fabricated composites.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

First-principles prediction of intrinsic piezoelectricity, spin-valley splitting and magneto-crystal anisotropy in 2H-VS2 magnetic semiconductor

Yankai Chen, Ruoxue Zhang, Yukai An

Summary: The piezoelectricity, valley character, and magnetic properties of 2H-VS2 monolayer were studied, revealing its potential applications in spintronics and valleytronics due to its bipolar magnetic semiconductor characteristics and superior physical properties.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Thermodynamic, entanglement and spin Hall conductivity on kagome-honeycomb lattice system

Leonardo S. Lima

Summary: This study investigates the thermodynamic quantities, such as entropy, specific heat, and magnetic susceptibility, in the next-nearest-neighbors Heisenberg model on a honeycomb-kagome lattice. The linear spin-wave approach is applied to obtain the temperature-dependent behavior of these quantities. Additionally, the entanglement negativity, a quantifier of quantum entanglement, and the spin Hall conductivity are also studied. The results show that all the thermodynamic quantities, as well as the entanglement negativity and spin Hall conductivity, exhibit an increasing trend with temperature. Furthermore, it is found that all the analyzed quantities approach zero in the low-temperature limit, consistent with experimental observations.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Large conventional and inverse magnetocaloric effects in RE2Ga2Mg (RE = Tm, Er, Ho) compounds

Zhaoxing Wang, Maximilian Kai Reimann, Wang Chen, Yikun Zhang, Rainer Poettgen

Summary: The Mo2FeB2-type compounds RE2Ga2Mg (RE = Tm, Er, Ho) exhibit a large magnetocaloric effect, making them promising for cryogenic magnetic cooling applications.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)