4.5 Article

Fabrication of Co0.5Ni0.5CrxFe2-xO4 materials via sol-gel method and their characterizations

期刊

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS
卷 327, 期 -, 页码 167-171

出版社

ELSEVIER
DOI: 10.1016/j.jmmm.2012.09.059

关键词

Ferrite nanoparticle; Cation distribution; Magnetization

向作者/读者索取更多资源

Co0.5Ni0.5CrxFe2-xO4 nanoparticles have been designed by the sol-gel auto combustion method, using nitrates of the respective metal ions, and citric acid as the starting materials. The process takes only a few minutes to obtain as-received Cr-substituted Co-Ni ferrite powders. X-ray diffraction (XRD), vibrational sample magnetometer (VSM), transmission electron microscopy (TEM) are utilized in order to study the effect of variation in the Cr3+ substitution and its impact on particle size, lattice constant, specific surface area, cation distribution and magnetic properties. Lattice parameter, particle size found to decrease with increasing Cr3+ content, whereas specific surface area showed increasing trend with the Cr3+ substitution. Cation distribution indicates that the Cr, Co and Ni ions show preference toward octahedral [B] site, whereas Fe occupies both tetrahedral (A) and octahedral [B] sites. Saturation magnetization (M-S) decreased from 65.1 to 40.6 emu/g with the increase in Cr3+ substitution. However, Coercivity increased from 198 to 365 Oe with the Cr3+ substitution. (c) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Electrical & Electronic

Mn0.7Zn0.3Fe2O4 + BaTiO3 composites: structural, morphological, magnetic, M-E effect and dielectric properties

S. S. Choudhari, S. B. Shelke, Khalid Mujassam Batoo, Syed Farooq Adil, A. B. Kadam, Ahamad Imran, Muhammad Hadi, Emad H. Raslan, Sagar E. Shirsath, R. H. Kadam

Summary: In this study, MZFO-BTO composites were synthesized using sol-gel auto-ignition route and ceramic route, showing both piezomagnetic and piezoelectric phases. The average crystallite size increased with increasing BTO phase, and different strains were observed in MZFO and BTO phases. SEM images and EDX analysis confirmed the microstructure and composition of the composites. The improved magnetoelectric properties of the composite make it suitable for electronic devices.

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS (2021)

Article Nanoscience & Nanotechnology

Site Occupancy, Surface Morphology and Mechanical Properties of Ce3+ Added Ni-Mn-Zn Ferrite Nanocrystals Synthesized Via Sol-Gel Route

Vikram More, R. B. Borade, Kirti Desai, V. K. Barote, S. S. Kadam, V. S. Shinde, D. R. Kulkarni, R. H. Kadam, S. T. Alone

Summary: Ferrite nanoparticles of Ni0.35Mn0.35Zn0.3Fe2-xCexO4 ferrite system were synthesized using sol-gel auto combustion technique and characterized for their structure and properties. Substitution of Fe3+ ions by Ce3+ ions resulted in changes in the crystal structure and properties of the samples.
Article Materials Science, Ceramics

(BaTiO3)1-x + (Co0.5Ni0.5Nb0.06Fe1.94O4)x nanocomposites: Structure, morphology, magnetic and dielectric properties

Yassine Slimani, Sagar E. Shirsath, Essia Hannachi, Munirah A. Almessiere, Moustafa M. Aouna, Nouf E. Aldossary, Ghulam Yasin, Abdulhadi Baykal, Bekir Ozcelik, Ismail Ercan

Summary: Two-phase nanocomposites of BTO and CNNFO were synthesized using solid state route. XRD analysis showed that with increasing CNNFO content, BTO crystallite size decreased while CNNFO size increased, leading to reduced porosity and enhanced grain connectivity. Optical properties revealed a decrease in band gap energy with increasing CNNFO content, and analysis of magnetic and dielectric properties indicated a significant impact of CNNFO on BTO material.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2021)

Article Chemistry, Multidisciplinary

Structural, Magnetic, and Mossbauer Parameters' Evaluation of Sonochemically Synthesized Rare Earth Er3+ and Y3+ Ions-Substituted Manganese-Zinc Nanospinel Ferrites

Munirah A. Almessiere, Sadik Guner, Hakan Gungunes, Murat Sertkol, Yassine Slimani, Rabail Badar, Sultan Akhtar, Sagar E. Shirsath, Abdulhadi Baykal

Summary: The effect of Er3+ and Y3+ ion-co-substituted Mn0.5Zn0.5ErxYxFe2-2xO4 spinel nanoferrites prepared by a sonochemical approach was investigated, revealing superparamagnetic and ferrimagnetic properties at room temperature and 10 K, respectively. The saturation magnetization and calculated magnetic moments showed indirect proportionalities with increasing ion content. The coercivities and squareness ratios indicated the multidomain nature of the nanoparticles. The sample with the highest magnetic hardness showed the largest coercivity and internal anisotropy field among all magnetically soft nanoparticles.

ACS OMEGA (2021)

Article Materials Science, Multidisciplinary

Excellent Microwave Absorbing Properties of Nd3+-Doped Ni-Zn Ferrite/PANI Nanocomposite for Ku Band

Ravindra N. Kambale, Krishnakumar M. Sagar, Sunil M. Patange, Sagar E. Shirsath, K. G. Suresh, Vaishali A. Bambole

Summary: Nd3+-substituted Ni-Zn ferrite nanoparticles were synthesized using the sol-gel autocombustion technique, and a nanocomposite with polyaniline (PANI) was prepared through in situ polymerization. The microwave absorbing properties of both the ferrite nanoparticles and the ferrite/PANI nanocomposite were investigated, showing that the nanocomposite has excellent absorption properties for incident microwaves.

PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE (2022)

Article Chemistry, Multidisciplinary

Impact of Sm3+ and Er3+ Cations on the Structural, Optical, and Magnetic Traits of Spinel Cobalt Ferrite Nanoparticles: Comparison Investigation

Yassine Slimani, Munirah A. Almessiere, Sadik Guner, Bekir Aktas, Sagar E. Shirsath, Maxim Silibin, Alex Trukhanov, Abdulhadi Baykal

Summary: This study compared the structure, morphology, optical, and magnetic properties of Er3+ and Sm3+ codoped CoFe2O4 nanospinel ferrite synthesized via hydrothermal and sonochemical methods. The results showed that the distribution of cations and the variation in crystallite/particle sizes are key factors in controlling the intrinsic properties of the samples.

ACS OMEGA (2022)

Article Chemistry, Multidisciplinary

Interface-Driven Multiferroicity in Cubic BaTiO3-SrTiO3 Nanocomposites

Sagar E. Shirsath, M. Hussein N. Assadi, Ji Zhang, Nitish Kumar, Anil S. Gaikwad, Jack Yang, Helen E. Maynard-Casely, Yee Yan Tay, Jianhao Du, Haoyu Wang, Yin Yao, Zibin Chen, Jinxing Zhang, Shujun Zhang, Sean Li, Danyang Wang

Summary: Perovskite multiferroics have attracted significant attention in the development of multifunctional electronic devices. This study demonstrates the interface-driven multiferroicity in low-cost and eco-friendly bulk polycrystalline materials. The fabricated nanocomposites exhibit both room-temperature ferromagnetism and ferroelectricity, with a robust magnetoelectric coupling.

ACS NANO (2022)

Article Materials Science, Ceramics

Enhanced multiferroic effect in multi-phased Eu substituted Bi-Fe-Mn perovskite oxides

U. K. Wadne, R. H. Kadam, K. M. Batoo, M. L. Mane, Sajjad Hussain, Sagar E. Shirsath, A. R. Shitre

Summary: The authors synthesized Eu-substituted Bi-Fe-Mn multiferroics and investigated the effects of different Eu doping concentrations on the crystal structure, magnetic and dielectric properties of the material.

CERAMICS INTERNATIONAL (2023)

Article Engineering, Electrical & Electronic

Elastic and dielectric properties of nano-crystalline Dy3+ substituted zinc-chromium ferrite

Ravi Shitole, V. K. Barote, M. L. Mane, S. T. Alone, K. M. Batoo, Sajjad Hussain, R. H. Kadam

Summary: This study investigates the structural, elastic and dielectric properties of ZnCr0.5DyxFe1.5-xO4 ferrite system. The samples were synthesized using the sol-gel auto-combustion method and characterized by various techniques such as XRD, IR, SEM, TEM and dielectric measurements. The substitution of rare-earth Dy ions significantly alters the properties of the ferrite system.

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS (2023)

Article Chemistry, Multidisciplinary

A thorough Investigation of Rare-Earth Dy3+ Substituted Cobalt-Chromium Ferrite and Its Magnetoelectric Nanocomposite

Ram H. Kadam, Ravi Shitole, Santosh B. Kadam, Kirti Desai, Atul P. Birajdar, Vinod K. Barote, Khalid Mujasam Batoo, Sajjad Hussain, Sagar E. Shirsath

Summary: The stoichiometric compositions of a ferrite system with a chemical formula CoCr0.5DyxFe1.5-xO4 were prepared using the sol-gel auto-combustion method. The structural, morphological and magnetic properties were studied using various techniques. XRD analysis confirmed the cubic spinel structure of the samples. The cation distribution and magnetoelectric properties were also investigated.

NANOMATERIALS (2023)

Article Materials Science, Multidisciplinary

Structural characterization and enhanced magnetic and dielectric properties of Ce3+ substituted Co-Cr-Fe-O nano-ferrites synthesized using sol-gel method

S. S. Kadam, V. D. More, P. K. Gaikwad, K. M. Batoo, Sajjad Hussain, R. H. Kadam, S. E. Shirsath, A. B. Kadam

Summary: The unique structural and physical properties of rare earth doped spinel ferrites, along with their wide applications, have attracted the interest of scientists. In this study, CoCrCexFeO samples with different compositions were synthesized using the sol-gel auto-ignition process. The results showed that increasing cerium concentration led to changes in the lattice lengths and the substitution of Ce3+ for Fe3+. The samples exhibited a narrow size distribution with nanoparticles approximately 50 nm in size. Additionally, the substitution of Ce3+ reduced the saturation magnetization and increased the coercive field, making the samples suitable for permanent magnets.

APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING (2023)

Article Chemistry, Applied

Modified Structural and Magnetic Properties of Ni-Mn-Zn Ferrite Nanoparticles Doped with Ce3+Ions

Vikram More, Supriya Kadam, Satish Shelke, Pravin Gaikwad, Ramkrishna Kadam, Suresh Alone

Summary: Polycrystalline Ni-Mn-Zn nano-ferrites doped with fractional amount of Ce3+ ions were fabricated using the sol-gel method. The as-prepared samples were characterized and analyzed for their properties, showing a well-defined single-phase cubic spinel structure, homogeneous surface morphology, and suitability for high-frequency applications.

BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY (2022)

Article Chemistry, Physical

The crystalline/amorphous stacking structure of SnO2 microspheres for excellent NO photocatalytic performance

Li Zhang, Ruobing Tong, Sagar E. Shirsath, Yanling Yang, Guohui Dong

Summary: Surface amorphization via a crystalline/amorphous core-shell structure is an effective approach for constructing a high-efficiency photocatalyst. The innovative crystalline/amorphous stacking structure of SnO2 microspheres significantly improves photocatalytic NO removal under visible light irradiation. This structure enhances charge separation efficiency and inhibits surface absorption competition, leading to the generation of more active oxygen species for NO oxidation.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Materials Science, Multidisciplinary

Remote detection of bovine serum albumin (BSA) using cantilever beam magnetometer

Bibhutibhusan Nayak, S. Narayana Jammalamadaka

Summary: This article presents a method for remote detection of bovine serum albumin (BSA) using modified cantilever beam magnetometry (CBM). By combining a magnetostrictive Fe70Ga30 cantilever with optical detection technique, researchers were able to detect high concentrations of BSA remotely. The results of this study demonstrate the potential of this method in estimating the magnetostriction of thin films.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Influence of magnetic external field and particle size on the formation of a single domain state

Yu Hao, R. E. Camley, Z. Celinski

Summary: Magnetic particles have various applications and their magnetic state is determined by their size and the strength of an applied magnetic field. Numerical simulations were performed to study the effect of an applied field on the critical size of single-domain magnetic particles, and the critical field at which a particle becomes single-domain was determined.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Smart nanocomposite SrFe12O19/α or γ - Fe2O3 thin films with adaptive magnetic properties

Nitesh Singh, Naresh Kumar, Dharohar Sahadot, Anil Annadi, Vidyadhar Singh, Murtaza Bohra

Summary: The unique magnetic properties of FM/AFM and hard-FM/soft-FM nanocomposite thin films have significant relevance for numerous applications. The composition and performance of different magnetic phases in the nanocomposite films can be significantly affected by the laser ablation conditions and annealing temperature.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

A symmetric T-H shape wideband negative index metamaterial for 28-GHz millimeter-wave applications

Alya Ali Musaed, Samir Salem Al-Bawri, Khaled Aljaloud, Wazie M. Abdulkawi, Mohammad Tariqul Islam, Mandeep Jit Singh, Zaini Sakawi, Husam Hamid Ibrahim

Summary: This research presents a wideband tunable metamaterial for body-centric applications in the millimeter-wave frequency band. The proposed metamaterial has a wide operating frequency range and enhanced gain, making it suitable for improving the antenna performance in 5G wireless communication systems.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Structure and properties of NdCuGa3 single crystals

Binod K. Rai, Boris Maiorov, Krzysztof Gofryk, Patrick O'Rourke, Catherine Housley, Henry Ajo, Asraf Sawon, Arjun K. Pathak, Narayan Poudel, Qiang Zhang, Travis J. Williams, Matthias Frontzek

Summary: This manuscript reports on the structural and magnetic properties of NdCuGa3. The study confirmed the crystal structure and magnetic phase transition of NdCuGa3 using XRD, neutron diffraction, magnetization, and specific heat measurements. The neutron diffraction data further confirmed the antiferromagnetic phase of NdCuGa3.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

A multiferroic coupling mechanism in the polar interface region of GaN-ZnO heterojunction: A first-principle study

Haonan Li, Cong Li, Hailiang Huang, Guodong Hao, Fei Wang

Summary: The electronic structure and ferroelectric-ferromagnetic coupling properties of Y-doped and vacancy-containing GaN-ZnO heterojunctions are systematically investigated. The magnetism in vacancy-containing systems is generated by the spin polarization of unpaired electrons induced by cationic vacancies, while in Y-doped systems, bound magnetic polarons are formed by the orbital hybridization of s-state and d-state electrons of Y-doped elements.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Co-precipitation method followed by ultrafast sonochemical synthesis of aluminium doped M type BaFe11.4-xAlxCo0.6O19 hexaferrites for various applications

Muhammad Ijaz, Hafeez Ullah, Bandar Ali Al-Asbahi, Mati Ullah Khan, Zaheer Abbas, Sana Ullah Asif

Summary: M-type BaFe11.4-xAlxCo0.6O19 hexaferrites with Al3+ substitutions were synthesized using the co-precipitation method followed by Sonochemical process. The synthesized materials were characterized using XRD, FTIR, UV-vis spectroscopy, VSM, SEM, and LCR meter. The results showed that aluminum doping decreased the band gap and enhanced the magnetic and dielectric properties of the hexaferrites, making them suitable for various applications.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Magnons in the fan phase of anisotropic frustrated antiferromagnets

Oleg I. Utesov

Summary: The elementary excitations spectrum of anisotropic frustrated antiferromagnets in the fan phase is discussed. It is found that the low-energy part of the spectrum consists of a gapless phason branch with linear dispersion and a gapped optical branch corresponding to the fan structure amplitude oscillations. In the high-energy part of the spectrum, the excitations are similar to the magnons of the fully polarized phase.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Vapor bubbles departure frequency at ferrofluid boiling on a single nucleation site in a uniform horizontal magnetic field

Alexander Ya. Simonovskii, Alexander A. Yanovskii, Arthur R. Zakinyan

Summary: In this study, the departure frequency of vapor bubbles during boiling of ferrofluid in a horizontal magnetic field is experimentally investigated. Two methods, visual and inductive, are used to measure the frequency of bubble departure. The results show that the bubble departure frequency can decrease with increasing magnetic field strength and increase with increasing temperature of the heat-emitting surface. A linear stability analysis is conducted to analyze the influence of the magnetic field on the frequency of bubble formation during ferrofluid boiling.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Magnetic and transformation properties of Ni2MnGa combinatorically substituted with 5 at.% of transition elements from Cr to Cu - Experimental insight

Oleg Heczko, Michal Rames, Vit Kopecky, Petr Vertat, Michal Varga, Ladislav Straka

Summary: Heusler Ni-Mn-Ga alloys are multiferroic materials that exhibit magnetic shape memory (MSM) phenomena. By doping transition elements into Ni2MnGa alloys, the transformation temperatures can be modified and complex behaviors can be observed, such as the variation in saturation magnetization and the effects of elemental substitution on compound properties.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

DFT calculations for electronic and magnetic properties of full Heusler Fe2MnAs alloy in perfect and defect structures

Carlos Ariel Samudio Perez, Ariel Flaig de Marchi

Summary: This study investigates the electronic and magnetic properties of the Full-Heusler Fe2MnAs alloy using first-principles calculations. The alloy may form spontaneously and exhibits a ferromagnetic order and high spin-polarization. It can be transformed into a half-metal by contracting the lattice constant. Additionally, certain defects contribute to the spin-polarization of the alloy, making it a fully half-metallic material.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Enhancing electromagnetic properties through carbon Nanotube-Based polymer composites

Satish Geeri, Aditya Kolakoti, Prasadarao Bobbili

Summary: In this study, an electromagnetic wave-absorbing material was fabricated using a polymer composite material with fiber orientation and Multiwall Carbon Nanotubes as filler materials, along with a Perfect Electric Conducting material. The experiments demonstrated strong electromagnetic absorbing properties for the composites with PEC-coated and non-PEC-coated materials. Mechanical, thermal, and morphological analysis confirmed the similar trend in properties. CRITIC analysis helped identify the sequence order of sustaining properties for the fabricated composites.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

First-principles prediction of intrinsic piezoelectricity, spin-valley splitting and magneto-crystal anisotropy in 2H-VS2 magnetic semiconductor

Yankai Chen, Ruoxue Zhang, Yukai An

Summary: The piezoelectricity, valley character, and magnetic properties of 2H-VS2 monolayer were studied, revealing its potential applications in spintronics and valleytronics due to its bipolar magnetic semiconductor characteristics and superior physical properties.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Thermodynamic, entanglement and spin Hall conductivity on kagome-honeycomb lattice system

Leonardo S. Lima

Summary: This study investigates the thermodynamic quantities, such as entropy, specific heat, and magnetic susceptibility, in the next-nearest-neighbors Heisenberg model on a honeycomb-kagome lattice. The linear spin-wave approach is applied to obtain the temperature-dependent behavior of these quantities. Additionally, the entanglement negativity, a quantifier of quantum entanglement, and the spin Hall conductivity are also studied. The results show that all the thermodynamic quantities, as well as the entanglement negativity and spin Hall conductivity, exhibit an increasing trend with temperature. Furthermore, it is found that all the analyzed quantities approach zero in the low-temperature limit, consistent with experimental observations.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)

Article Materials Science, Multidisciplinary

Large conventional and inverse magnetocaloric effects in RE2Ga2Mg (RE = Tm, Er, Ho) compounds

Zhaoxing Wang, Maximilian Kai Reimann, Wang Chen, Yikun Zhang, Rainer Poettgen

Summary: The Mo2FeB2-type compounds RE2Ga2Mg (RE = Tm, Er, Ho) exhibit a large magnetocaloric effect, making them promising for cryogenic magnetic cooling applications.

JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS (2024)