4.7 Article

Nitric Oxide Regulates Dark-Induced Leaf Senescence Through EIN2 in Arabidopsis

期刊

JOURNAL OF INTEGRATIVE PLANT BIOLOGY
卷 54, 期 8, 页码 516-525

出版社

WILEY
DOI: 10.1111/j.1744-7909.2012.01140.x

关键词

Arabidopsis; dark; EIN2; leaf senescence; nitric oxide

资金

  1. National Natural Science Foundation of China [31170244, 30770198]
  2. National Natural Science Foundation of China [31170244, 30770198]

向作者/读者索取更多资源

The nitric oxide (NO)-deficient mutant nos1/noa1 exhibited an early leaf senescence phenotype. ETHYLENE INSENSITIVE 2 (EIN2) was previously reported to function as a positive regulator of ethylene-induced senescence. The aim of this study was to address the question of how NO interacts with ethylene to regulate leaf senescence by characterizing the double mutant ein2-1 nos1/noa1 (Arabidopsis thaliana). Double mutant analysis revealed that the nos1/noa1-mediated, dark-induced early senescence phenotype was suppressed by mutations in EIN2, suggesting that EIN2 is involved in nitric oxide signaling in the regulation of leaf senescence. The results showed that chlorophyll degradation in the double mutant leaves was significantly delayed. In addition, nos1/noa1-mediated impairment in photochemical efficiency and integrity of thylakoid membranes was reverted by EIN2 mutations. The rapid upregulation of the known senescence marker genes in the nos1/noa1 mutant was severely inhibited in the double mutant during leaf senescence. Interestingly, the response of dark-grown nos1/noa1 mutant seedlings to ethylene was similar to that of wild type seedlings. Taken together, our findings suggest that EIN2 is involved in the regulation of early leaf senescence caused by NO deficiency, but NO deficiency caused by NOS1/NOA1 mutations does not affect ethylene signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据