4.6 Article

Carbon nanofiber production: Life cycle energy consumption and environmental impact

期刊

JOURNAL OF INDUSTRIAL ECOLOGY
卷 12, 期 3, 页码 394-410

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1530-9290.2008.00052.x

关键词

damage indicators; energy analysis; industrial ecology; nanomaterials; nanotechnology; process life cycle assessment (LCA)

资金

  1. U. S. National Science Foundation [EEC-0425626]
  2. U. S. Environmental Protection Agency [R832532]
  3. EPA [R832532, 909142] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Holistic understanding of nanotechnology using systems analysis tools is essential for evaluating claims about the potential benefits of this emerging technology. This article presents one of the first assessments of the life cycle energy requirements and environmental impact of carbon nanofibers (CNFs) synthesis. Life cycle inventory data are compiled with data reported in the open literature. The results of the study indicate relatively higher life cycle energy requirements and higher environmental impact of CNFs as compared to traditional materials, like primary aluminum, steel, and polypropylene, on an equal mass basis. Life cycle energy requirements for CNFs from a range of feedstock materials are found to be 13 to 50 times that of primary aluminum on an equal mass basis. Similar trends are observed from the results of process life cycle assessment (LCA), as conveyed by different midpoint and endpoint damage indicators. Savings in life cycle energy consumption and, hence, reductions in environmental burden are envisaged if higher process yields of these fibers can be achieved in continuous operations. Since the comparison of CNFs is performed on an equal mass basis with traditional materials, these results cannot be generalized for CNF-based nanoproducts. Quantity of use of these engineered nanomaterials and resulting benefits will decide their energy and environmental impact. Nevertheless, the life cycle inventory and the results of the study can be used for evaluating the environmental performance of specific CNF-based nanoproducts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据