4.8 Article

Energy and complexity: New ways forward

期刊

APPLIED ENERGY
卷 138, 期 -, 页码 150-159

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2014.10.057

关键词

Complexity science; Energy systems; Modelling; Complex adaptive systems; Agent-based modelling; Energy policy

资金

  1. Engineering and Physical Sciences Research Council (EPSRC) [EP/G059780/1, EP/K012398/1]
  2. EPSRC [EP/K022288/1, EP/J005649/1]
  3. International Centre for Infrastructure Future [EP/K012347/1]
  4. EPSRC [EP/K022288/1, EP/K012347/1, EP/G059780/1, EP/J005649/1, EP/K012398/1] Funding Source: UKRI
  5. ESRC [ES/K006576/1] Funding Source: UKRI
  6. Economic and Social Research Council [ES/K006576/1] Funding Source: researchfish
  7. Engineering and Physical Sciences Research Council [EP/J005649/1, EP/K022288/1, EP/G059780/1, EP/K012347/1, EP/K012398/1] Funding Source: researchfish

向作者/读者索取更多资源

The purpose of this paper is to review the application of complexity science methods in understanding energy systems and system change. The challenge of moving to sustainable energy systems which provide secure, affordable and low-carbon energy services requires the application of methods which recognise the complexity of energy systems in relation to social, technological, economic and environmental aspects. Energy systems consist of many actors, interacting through networks, leading to emergent properties and adaptive and learning processes. Insights on these type of phenomena have been investigated in other contexts by complex systems theory. However, these insights are only recently beginning to be applied to understanding energy systems and systems transitions. The paper discusses the aspects of energy systems (in terms of technologies, ecosystems, users, institutions, business models) that lend themselves to the application of complexity science and its characteristics of emergence and coevolution. Complex-systems modelling differs from standard (e.g. economic) modelling and offers capabilities beyond those of conventional models, yet these methods are only beginning to realize anything like their full potential to address the most critical energy challenges. In particular there is significant potential for progress in understanding those challenges that reside at the interface of technology and behaviour. Some of the computational methods that are currently available are reviewed: agent-based and network modelling. The advantages and limitations of these modelling techniques are discussed. Finally, the paper considers the emerging themes of transport, energy behaviour and physical infrastructure systems in recent research from complex-systems energy modelling. Although complexity science is not well understood by practitioners in the energy domain (and is often difficult to communicate), models can be used to aid decision-making at multiple levels e.g. national and local, and to aid understanding and allow decision making. The techniques and tools of complexity science, therefore, offer a powerful means of understanding the complex decision-making processes that are needed to realise a low-carbon energy system. We conclude with recommendations for future areas of research and application. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据