4.2 Article

Specific antibody immobilization with biotin-poly(L-lysine)-g-poly(ethylene glycol) and protein A on microfluidic chips

期刊

JOURNAL OF IMMUNOLOGICAL METHODS
卷 350, 期 1-2, 页码 97-105

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jim.2009.07.011

关键词

Immunoassay; Microfluidic biochip; Antibody immobilization; Biotin-poly(L-lysine)-g-poly(ethylene glycol); Protein A

资金

  1. National Science Foundation [DMI0419585]

向作者/读者索取更多资源

Highly efficient antibody immobilization is crucial for conducting high-performance immunoassays such as enzyme-linked immunosorbent assay (ELISA) in microarray and microfluidic biochips. In this study, a biotin-poly(L-lysine)-g-poly(ethylene glycol) (biotin-PLL-g-PEG) and protein A-based technique was developed to immobilize antibody on the surface of poly(methyl methacrylate) (PMMA) microchannels. First, PMMA surface was activated by oxygen plasma, followed by poly (acrylic acid) (PAA) grafting to add functional carboxyl group for subsequent binding. After the biotin-PLL-g-PEG molecules reacted with carboxyl groups through the electrostatic interactions, biotinylated protein A was immobilized on the surface through a linking molecule, neutravidin. To evaluate the applicability of this novel immobilization strategy, human interferon-gamma (IFN-gamma) was used as a model protein. Since protein A could better control the immobilization orientation, and the combination of biotin-PLL-g-PEG and PLL-g-PEG could adjust the conformation of antibodies, antigen capture efficiency and detection signals were significantly improved on the microchips by using this strategy. The optimal grafting conditions were also experimentally determined: the biotin grafting ratio of 0.189 in the PLL-g-PEG molecule and the mixture ratio of 85% (biotin-PLL-g-PEG to PLL-g-PEG). This surface modification can be applied for targeted drug delivery, biosensor and other immunoassay applications. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据