4.5 Article

Simvastatin abates development of renal fibrosis in experimental renovascular disease

期刊

JOURNAL OF HYPERTENSION
卷 26, 期 8, 页码 1651-1660

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/HJH.0b013e328302833a

关键词

atherosclerosis; epithelial-to-mesenchymal transition; kidney; remodeling; simvastatin

资金

  1. NHLBI NIH HHS [P01HL085307, HL-77131] Funding Source: Medline
  2. NIDDK NIH HHS [DK073608] Funding Source: Medline

向作者/读者索取更多资源

Background and objectives Epithelial-to-mesenchymal transition contributes to renal fibrogenesis, which is regulated by profibrogenic and antifibrogenic mediators. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors can prevent epithelial-to-mesenchymal transition in some models. Therefore, we tested the hypothesis that epithelial-to-mesenchymal transition participates in renal injury in porcine atherosclerotic renovascular disease and can be attenuated by simvastatin. Methods Renal hemodynamics, function, and endothelial function were quantified in vivo in pigs after 12 weeks of combined hypercholesterolemia + renal artery stenosis without (n = 8) or with oral simvastatin supplementation (1.2 mg/kg, n = 6), and in controls (n = 8). Ex-vivo studies assessed renal immunoreactivity to fibrogenic factors and renal histology. Results Blood pressure, cholesterol levels, and basal renal function were similar in treated and untreated pigs with hypercholesterolemia + renal artery stenosis. Hypercholesterolemia + renal artery stenosis significantly upregulated renal transforming growth factor-beta signaling and elicited epithelial-to-mesenchymal transition, accompanied by glomerulosclerosis and renal fibrosis. Simvastatin did not affect smad 2/3 expression but upregulated expression of hepatocyte growth factor, bone morphogenetic factor-7, and smad 7 and prevented most of these renal structural and functional alterations. Furthermore, simvastatin improved renal blood flow response to endothelium-dependent challenge (+111.3 +/- 35.5 vs. -30.4 +/- 18.7 ml/min in untreated pigs, P<0.05). Conclusion Simvastatin upregulates inhibitors of transforming growth factor-beta signaling, attenuates epithelial-to-mesenchymal transition, and decreases renal fibrosis in hypercholesterolemia + renal artery stenosis. These lipid-lowering-independent effects result in improvement of renal function, suggesting clinically valuable potential for statins in preserving the stenotic kidney and limiting deterioration of renal function in atherosclerotic renovascular disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据