4.7 Article

Influence of climate, fire severity and forest mortality on predictions of long term streamflow: Potential effect of the 2009 wildfire on Melbourne's water supply catchments

期刊

JOURNAL OF HYDROLOGY
卷 488, 期 -, 页码 1-16

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhydrol.2013.02.001

关键词

Process-based modelling; Macaque; Forest; Wildfire; Streamflow

资金

  1. Melbourne Water (MW)
  2. Victorian Department of Sustainability and Environment (DSE) Integrated Forest Ecosystem Research Program

向作者/读者索取更多资源

In February 2009, wildfire affected nine catchments, or approximately 28% of forested catchment area that supplies water to the city of Melbourne, Australia. This has potential to significantly affect the long term water use of these Eucalyptus forests and the consequential water yield because of the ecohydrologic response of some eucalypt species. Approximately 11% of the catchment area was severely burnt by intense fire, where vegetation mortality is higher. Catchment scale models using a physically-based approach were developed for the fire-affected water supply catchments. Different inputs of climate and forest mortality after fire were used to examine the relative contributions of rainfall, fire severity, forest type and forest age on post-fire streamflow. Simulations show the effect of fire on long term streamflow is likely to depend on a number of factors, the relative influence of which changes as rainfall becomes more limiting. Under average rainfall conditions, total reduction in post-fire streamflow after 100 years estimated to be between 1.4% (similar to 12 GL year(-1)) and 2.8% (similar to 24 GL year(-1)) are an order of magnitude lower than reductions in total catchment inflow during the period of low rainfall between 1997 and 2009, in which reservoir inflow was reduced by nearly 37%. The main reasons for the lower than expected changes in water yield are that a lower proportion of the catchments were affected by severe fire, and so mortality within the fire area was relatively low, and that the average age of the forest canopy (93 years) is younger than what is generally considered old growth forest. This means that the baseline (no-fire) streamflow used for reference is lower than would be expected with older, mature forest. The greatest post-fire affect on total water yield was predicted for the O'Shannassy catchment. This is due to the average forest age, which is the oldest of any of the catchments, that it has the highest average rainfall (1680 mm year(-1)), and that it contains the largest proportion of ash-type forest severely burnt (38.7%). Under wetter than average conditions, change in post-fire water yield is largely explained by changes in average age of the forest. The rates of ET are largely determined by the conductance and interception of the forest canopy. Under lower than average rainfall conditions, when water becomes limiting, annual rainfall is the best predictor of post-fire change in water yield. Under conditions of low rainfall and low soil water content that are conducive to larger wildfires, any initial increase in post-fire streamflow due to reduced canopy cover may not occur or be detected because a substantial soil water deficit must first be removed before appreciable changes in streamflow will occur. This partly explains the lack of increase in initial post-fire streamflow reported after wildfire compared to an increase in streamflow following forest harvesting experiments during wetter periods. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Ecology

Morphological and moisture availability controls of the leaf area-to-sapwood area ratio: analysis of measurements on Australian trees

Henrique Furstenau Togashi, Iain Colin Prentice, Bradley John Evans, David Ian Forrester, Paul Drake, Paul Feikema, Kim Brooksbank, Derek Eamus, Daniel Taylor

ECOLOGY AND EVOLUTION (2015)

Article Agronomy

Effect of soil salinity on growth of irrigated plantation Eucalyptus in south-eastern Australia

P. M. Feikema, T. G. Baker

AGRICULTURAL WATER MANAGEMENT (2011)

Article Ecology

A comparison of four process-based models and a statistical regression model to predict growth of Eucalyptus globulus plantations

Peter Miehle, Michael Battaglia, Peter J. Sands, David I. Forrester, Paul M. Feikema, Stephen J. Livesley, Jim D. Morris, Stefan K. Arndt

ECOLOGICAL MODELLING (2009)

Article Computer Science, Interdisciplinary Applications

Modelling the long term water yield impact of wildfire and other forest disturbance in Eucalypt forests

P. N. J. Lane, P. M. Feikema, C. B. Sherwin, M. C. Peel, A. C. Freebairn

ENVIRONMENTAL MODELLING & SOFTWARE (2010)

Article Computer Science, Interdisciplinary Applications

Estimating catchment-scale impacts of wildfire on sediment and nutrient loads using the E2 catchment modelling framework

Paul M. Feikema, Gary J. Sheridan, Robert M. Argent, Patrick N. J. Lane, Rodger B. Grayson

ENVIRONMENTAL MODELLING & SOFTWARE (2011)

Article Forestry

Evaluation of a process-based ecosystem model for long-term biomass and stand development of Eucalyptus globulus plantations

Peter Miehle, Ruediger Grote, Michael Battaglia, Paul M. Feikema, Stefan K. Arndt

EUROPEAN JOURNAL OF FOREST RESEARCH (2010)

Article Forestry

Validation of plantation transpiration in south-eastern Australia estimated using the 3PG+forest growth model

Paul M. Feikema, Jim D. Morris, Craig R. Beverly, John J. Collopy, Thomas G. Baker, Patrick N. J. Lane

FOREST ECOLOGY AND MANAGEMENT (2010)

Article Plant Sciences

Comment on Wood et al. 2008, 'Impacts of fire on forest age and runoff in mountain ash forests'

Richard Benyon, Shane Haydon, Rob Vertessy, Tom Hatton, George Kuczera, Paul Feikema, Patrick Lane

FUNCTIONAL PLANT BIOLOGY (2010)

Article Forestry

Chloride content and biomass partitioning in Eucalyptus hybrids grown on saline sites

Paul M. Feikema, Joanna M. Sasse, Gamini D. Bandara

NEW FORESTS (2012)

Article Agronomy

The water balance and water sources of a Eucalyptus plantation over shallow saline groundwater

Paul M. Feikema, Jim D. Morris, Luke D. Connell

PLANT AND SOIL (2010)

Article Engineering, Civil

A robust approach for calibrating a daily rainfall-runoff model to monthly streamflow data

Julien Lerat, Mark Thyer, David McInerney, Dmitri Kavetski, Fitsum Woldemeskel, Christopher Pickett-Heaps, Daeyhok Shin, Paul Feikema

JOURNAL OF HYDROLOGY (2020)

Article Geosciences, Multidisciplinary

Optimising seasonal streamflow forecast lead time for operational decision making in Australia

Andrew Schepen, Tongtiegang Zhao, Q. J. Wang, Senlin Zhou, Paul Feikema

HYDROLOGY AND EARTH SYSTEM SCIENCES (2016)

Article Biodiversity Conservation

Quantifying uncertainty from large-scale model predictions of forest carbon dynamics

Peter Miehle, Stephen J. Livesley, Changsheng Li, Paul M. Feikema, Mark A. Adams, Stefan K. Arndt

GLOBAL CHANGE BIOLOGY (2006)

Article Engineering, Civil

Reconstructing high-resolution groundwater level data using a hybrid random forest model to quantify distributed groundwater changes in the Indus Basin

Arfan Arshad, Ali Mirchi, Javier Vilcaez, Muhammad Umar Akbar, Kaveh Madani

Summary: High-resolution, continuous groundwater data is crucial for adaptive aquifer management. This study presents a predictive modeling framework that incorporates covariates and existing observations to estimate groundwater level changes. The framework outperforms other methods and provides reliable estimates for unmonitored sites. The study also examines groundwater level changes in different regions and highlights the importance of effective aquifer management.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Hydrological modelling of large-scale karst-dominated basin using a grid-based distributed karst hydrological model

Lihua Chen, Jie Deng, Wenzhe Yang, Hang Chen

Summary: A new grid-based distributed karst hydrological model (GDKHM) is developed to simulate streamflow in the flood-prone karst area of Southwest China. The results show that the GDKHM performs well in predicting floods and capturing the spatial variability of karst system.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Using a physics-based hydrological model and storm transposition to investigate machine-learning algorithms for streamflow prediction

Faruk Gurbuz, Avinash Mudireddy, Ricardo Mantilla, Shaoping Xiao

Summary: Machine learning algorithms have shown better performance in streamflow prediction compared to traditional hydrological models. In this study, researchers proposed a methodology to test and benchmark ML algorithms using artificial data generated by physically-based hydrological models. They found that deep learning algorithms can correctly identify the relationship between streamflow and rainfall in certain conditions, but fail to outperform traditional prediction methods in other scenarios.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Uncertainty separation of drought projection in the 21st century using SMILEs and CMIP6

Yadong Ji, Jianyu Fu, Bingjun Liu, Zeqin Huang, Xuejin Tan

Summary: This study distinguishes the uncertainty in drought projection into scenario uncertainty, model uncertainty, and internal variability uncertainty. The results show that the estimation of total uncertainty reaches a minimum in the mid-21st century and that model uncertainty is dominant in tropical regions.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Quantifying the natural flood management potential of leaky dams in upland catchments, Part II: Leaky dam impacts on flood peak magnitude

Z. R. van Leeuwen, M. J. Klaar, M. W. Smith, L. E. Brown

Summary: This study quantifies the effectiveness of leaky dams in reducing flood peak magnitude using a transfer function noise modelling approach. The results show that leaky dams have a significant but highly variable impact on flood peak magnitude, and managing expectations should consider event size and type.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Forecasting and optimization for minimizing combined sewer overflows using Machine learning frameworks and its inversion techniques

Zeda Yin, Yasaman Saadati, M. Hadi Amini, Linlong Bian, Beichao Hu

Summary: Combined sewer overflows pose significant threats to public health and the environment, and various strategies have been proposed to mitigate their adverse effects. Smart control strategies have gained traction due to their cost-effectiveness but face challenges in balancing precision and computational efficiency. To address this, we propose exploring machine learning models and the inversion of neural networks for more efficient CSO prediction and optimization.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Characterizing nitrogen dynamics and their response to sediment dredging in a lowland rural river

Qimou Zhang, Jiacong Huang, Jing Zhang, Rui Qian, Zhen Cui, Junfeng Gao

Summary: This study developed a N-cycling model for lowland rural rivers covered by macrophytes and investigated the N imports, exports, and response to sediment dredging. The findings showed a considerable N retention ability in the study river, with significant N imports from connected rivers and surrounding polders. Sediment dredging increased particulate nitrogen resuspension and settling rates, while decreasing ammonia nitrogen release, denitrification, and macrophyte uptake rates.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Using a two-step downscaling method to assess the impact of climate change on total nitrogen load in a small basin

Xue Li, Yingyin Zhou, Jian Sha, Man Zhang, Zhong-Liang Wang

Summary: High-resolution climate data is crucial for predicting regional climate and water environment changes. In this study, a two-step downscaling method was developed to enhance the spatial resolution of GCM data and improve the accuracy for small basins. The method combined medium-resolution climate data with high-resolution topographic data to capture spatial and temporal details. The downscaled climate data were then used to simulate the impacts of climate change on hydrology and water quality in a small basin. The results demonstrated the effectiveness of the downscaling method for spatially differentiated simulations.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Permafrost on the Tibetan Plateau is degrading: Historical and projected trends

Tongqing Shen, Peng Jiang, Jiahui Zhao, Xuegao Chen, Hui Lin, Bin Yang, Changhai Tan, Ying Zhang, Xinting Fu, Zhongbo Yu

Summary: This study evaluates the long-term interannual dynamics of permafrost distribution and active layer thickness on the Tibetan Plateau, and predicts future degradation trends. The results show that permafrost area has been decreasing and active layer thickness has been increasing, with an accelerated degradation observed in recent decades. This has significant implications for local water cycle processes, water ecology, and water security.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Quantifying precipitation moisture contributed by different atmospheric circulations across the Tibetan Plateau

Chi Zhang, Xu Zhang, Qiuhong Tang, Deliang Chen, Jinchuan Huang, Shaohong Wu, Yubo Liu

Summary: Precipitation over the Tibetan Plateau is influenced by systems such as the Asian monsoons, the westerlies, and local circulations. The Indian monsoon, the westerlies, and local circulations are the main systems affecting precipitation over the entire Tibetan Plateau. The East Asian summer monsoon primarily affects the eastern Tibetan Plateau. The Indian monsoon has the greatest influence on precipitation in the southern and central grid cells, while the westerlies have the greatest influence on precipitation in the northern and western grid cells. Local circulations have the strongest influence on the central and eastern grid cells.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

A methodology to improve the accuracy of Total phosphorous diffuse load estimates from agroforestry watersheds

Manuel Almeida, Antonio Rodrigues, Pedro Coelho

Summary: This study aimed to improve the accuracy of Total Phosphorus export coefficient models, which are essential for water management. Four different models were applied to 27 agroforestry watersheds in the Mediterranean region. The modeling approach showed significant improvements in predicting the Total Phosphorus diffuse loads.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Prediction of dissolved organic nitrogen via spectroscopic fingerprint in the shallow riverbed sediments of effluent-dominated rivers: A case study in Xi'an, northwest China

Yutao Wang, Haojie Yin, Ziyi Wang, Yi Li, Pingping Wang, Longfei Wang

Summary: This study investigated the distribution and transformation of dissolved organic nitrogen (DON) in riverbed sediments impacted by effluent discharge. The authors found that the spectral characteristics of dissolved organic matter (DOM) in surface water and sediment porewater could be used to predict DON variations in riverbed sediments. Random forest and extreme gradient boosting machine learning methods were employed to provide accurate predictions of DON content and properties at different depths. These findings have important implications for wastewater discharge management and river health.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Uncertainty analysis of 100-year flood maps under climate change scenarios

Saba Mirza Alipour, Kolbjorn Engeland, Joao Leal

Summary: This study assesses the uncertainty associated with 100-year flood maps under different scenarios using Monte Carlo simulations. The findings highlight the importance of employing probabilistic approaches for accurate and secure flood maps, with the selection of probability distribution being the primary source of uncertainty in precipitation.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Hydrological consequences of controlled drainage with subirrigation

Janine A. de Wit, Marjolein H. J. van Huijgevoort, Jos C. van Dam, Ge A. P. H. van den Eertwegh, Dion van Deijl, Coen J. Ritsema, Ruud P. Bartholomeus

Summary: The study focuses on the hydrological consequences of controlled drainage with subirrigation (CD-SI) on groundwater level, soil moisture content, and soil water potential. The simulations show that CD-SI can improve hydrological conditions for crop growth, but the success depends on subtle differences in geohydrologic characteristics.

JOURNAL OF HYDROLOGY (2024)

Article Engineering, Civil

Understanding the global success criteria for managed aquifer recharge schemes

Constantin Seidl, Sarah Ann Wheeler, Declan Page

Summary: Water availability and quality issues will become increasingly important in the future due to climate change impacts. Managed Aquifer Recharge (MAR) is an effective water management tool, but often overlooked. This study analyzes global MAR applications and identifies the key factors for success, providing valuable insights for future design and application.

JOURNAL OF HYDROLOGY (2024)