4.7 Article

Likelihood of burrow flow in Canadian agricultural lands

期刊

JOURNAL OF HYDROLOGY
卷 386, 期 1-4, 页码 142-159

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2010.03.016

关键词

Macropore flow; Agrochemicals; Contaminant transport; Large scale assessment; Preferential flow; Risk assessment

资金

  1. Agriculture and Agri-Food Canada

向作者/读者索取更多资源

Indicators of risk of water contamination (IROWCs) by agricultural contaminants are developed to assess sustainability of agriculture. Burrow flow (BF) is part of the transport hydrology algorithm used in IROWCs since it is a key pathway for sub-surface contaminant transport. The objectives of this study were to develop a methodology for predicting the likelihood of BF occurrence in agricultural soils across Canada at the landscape scale, and to determine its variation over a 25-year period (1981-2006). The BF algorithm considers the influence of climate, soil properties, and soil management on the likely frequency of BF and distribution of burrows (B) made by Lumbricus terrestris L. Nova Scotia, Prince Edward Island, Ontario, Quebec, followed by New Brunswick, had the highest likelihood of BF due to favourable humidity, sufficient heat, medium-textured soils, and strong runoff during the growing season and spring thaw. Alberta and Saskatchewan are too dry to favour BF. Areas with high risk of BF fall within locations of high potential for lateral flow due to shallow soils, or to the presence of tile drainage, which may connect BF pathways to important water bodies such as the Great Lakes and the St-Lawrence River. Sensitivity analyses on threshold values used in the BF algorithm indicated that Manitoba is the most sensitive province to changes in precipitation, Quebec to temperature, Prince Edward Island to soil depth, and Ontario to manure application. The BF algorithm can be used as a simple tool to predict the likelihood of water and contaminant transport along earthworm burrows with data available across Canada. It will be upgraded with new data (e.g. climate change) and with an improved algorithm after statistical analyses and correlations with actual water quality data. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据