4.4 Article

Numerical Modeling of Multidirectional Flow and Heat Transfer in Graphitic Foams

出版社

ASME
DOI: 10.1115/1.3084122

关键词

convective heat transfer; hydraulic loss; thermal dispersion; porous media; metallic foam; graphitic foam

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. SHARCNET

向作者/读者索取更多资源

To investigate the feasibility of the use of foams with an interconnected spherical pore structure in heat transfer applications, models for heat transfer and pressure drop for this type of porous materials are developed. Numerical simulations are carried out for laminar multidirectional thermofluid flow in an idealized pore geometry of foams with a wide range of geometry parameters. Semiheuristic models for pressure drop and heat transfer are developed from the results of simulations. A simplified solid-body drag equation with an extended high inertia term is used to develop the hydraulic model. A heat transfer model with a nonzero asymptotic term for very low Reynolds numbers is also developed. To provide hydraulic and heat transfer models suitable for a wide range of porosity, only a general form of the length-scale as a function of pore structure is defined a priori, where the parameters of the function were determined as part of the modeling process. The proposed ideal models are compared to the available experimental results, and the source of differences between experimental results and the ideal models is recognized and then calibrated for real graphitic foam. The thermal model is used together with volume-averaged energy equations to calculate the thermal dispersion in graphitic foam. The results of the calculations show that the linear models for thermal dispersion available in literature are oversimplified for predicting thermal dispersion in this type of porous material. [DOI:10.1115/1.3084122]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据