4.4 Article

Heat transfer behavior of silica nanoparticles experiment in pool boiling

出版社

ASME
DOI: 10.1115/1.2787020

关键词

nanofluids; pool boiling; CHF; surface charge

向作者/读者索取更多资源

The heat transfer characteristics of silica (SiO2) nanofluids at 0.5 vol % concentration and particle sizes of 10 nm and 20 nm in pool boiling with a suspended heating Nichrome wire have been analyzed. The influence of acidity on heat transfer has been studied. The pH value of the nanosuspensions is important from the point of view that it determines the stability of the particles and their mutual interactions toward the suspended heated wire. When there is no particle deposition on the wire, the nanofluid increases critical heat flux (CHF) by about 50% within the uncertainty limits regardless of pH of the base fluid or particle size. The extent of oxidation on the wire impacts CHF and is influenced by the chemical composition of nanofluids in buffer solutions. The boiling regime is further extended to higher heat flux when there is agglomeration on the wire. This agglomeration allows high heat transfer through interagglomerate pores, resulting in a nearly threefold increase in burnout heat flux. This deposition occurs for the charged 10 nm silica particle. The chemical composition, oxidation, and packing of the particles within the deposition on the wire are shown to be the reasons for the extension of the boiling regime and the net enhancement of the burnout heat flux.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据