4.7 Article

Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 201, 期 -, 页码 16-22

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2011.10.086

关键词

Nanomaterials; Wastewater; Titanium dioxide; Fullerenes; Biosolids

资金

  1. U.S. Environmental Protection Agency [RD831713, RD833322]
  2. Water Environment Research Foundation

向作者/读者索取更多资源

As engineered nanomaterials (NMs) become used in industry and commerce their loading to sewage will increase. In this research, sequencing batch reactors (SBRs) were operated with hydraulic (HRT) and sludge (SRT) retention times representative of full-scale biological WWTPs for several weeks. Under environmentally relevant NM loadings and biomass concentrations, NMs had negligible effects on ability of the wastewater bacteria to biodegrade organic material, as measured by chemical oxygen demand (COD). Carboxy-terminated polymer coated silver nanoparticles (fn-Ag) were removed less effectively (88% removal) than hydroxylated fullerenes (fullerols; >90% removal), nano TiO2 (>95% removal) or aqueous fullerenes (nC(60); >95% removal). Experiments conducted over 4 months with daily loadings of nC(60) showed that nC(60) removal from solution depends on the biomass concentration. Under conditions representative of most suspended growth biological WWTPs (e.g., activated sludge), most of the NMs will accumulate in biosolids rather than in liquid effluent discharged to surface waters. Significant fractions of fn-Ag were associated with colloidal material which suggests that efficient particle separation processes (sedimentation or filtration) could further improve removal of NM from effluent. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据