4.5 Article

Optimal placement of UV-based communications relay nodes

期刊

JOURNAL OF GLOBAL OPTIMIZATION
卷 48, 期 4, 页码 511-531

出版社

SPRINGER
DOI: 10.1007/s10898-010-9526-8

关键词

Unmanned vehicles; Global optimization; Hop-restricted shortest paths; Pareto solution; Label correcting algorithms

资金

  1. LinkLab
  2. ELLIIT network organization for Information and Communication Technology
  3. CENIIT Center for Industrial Information Technology [06.09]
  4. Swedish Research Council (VR) [2009-3857]
  5. Swedish Foundation for Strategic Research (SSF)

向作者/读者索取更多资源

We consider a constrained optimization problem with mixed integer and real variables. It models optimal placement of communications relay nodes in the presence of obstacles. This problem is widely encountered, for instance, in robotics, where it is required to survey some target located in one point and convey the gathered information back to a base station located in another point. One or more unmanned aerial or ground vehicles (UAVs or UGVs) can be used for this purpose as communications relays. The decision variables are the number of unmanned vehicles (UVs) and the UV positions. The objective function is assumed to access the placement quality. We suggest one instance of such a function which is more suitable for accessing UAV placement. The constraints are determined by, firstly, a free line of sight requirement for every consecutive pair in the chain and, secondly, a limited communication range. Because of these requirements, our constrained optimization problem is a difficult multi-extremal problem for any fixed number of UVs. Moreover, the feasible set of real variables is typically disjoint. We present an approach that allows us to efficiently find a practically acceptable approximation to a global minimum in the problem of optimal placement of communications relay nodes. It is based on a spatial discretization with a subsequent reduction to a shortest path problem. The case of a restricted number of available UVs is also considered here. We introduce two label correcting algorithms which are able to take advantage of using some peculiarities of the resulting restricted shortest path problem. The algorithms produce a Pareto solution to the two-objective problem of minimizing the path cost and the number of hops. We justify their correctness. The presented results of numerical 3D experiments show that our algorithms are superior to the conventional Bellman-Ford algorithm tailored to solving this problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据