4.3 Article

Field measurements of turbulence at an unstable interface between current and wave bottom boundary layers

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2010JC006138

关键词

-

资金

  1. NSF [OCE0648490]
  2. ONR

向作者/读者索取更多资源

In situ particle image velocimetry measurements, at a resolution of 3.5 Kolmogorov scales, have been performed in the inner part of the coastal bottom boundary layer. The spatial details enable us to directly determine the vertical distributions of mean velocity, Reynolds shear stress, shear production and dissipation rates, energy spectra, and abundance of eddies. Focusing on cases with wave velocity of similar magnitude as the mean current, velocity profiles have logarithmic distributions in the upper half of the sample area. Below the log layer, but well above the bottom ripples, an inflection point appears, indicating a region of flow instability. Based on data interpretation, which includes variations in wave phase with height, this inflection occurs near the interface between current and thinner wave boundary layer (WBL) below it. Scaling of mean velocity profiles with shear velocity and characteristic roughness is effective only above the inflection point, while turbulence parameters scale reasonably well at all elevations. Instabilities associated with the inflection are manifested by a peak in turbulent shear production rate and a rapid increase in small-scale turbulence, as is evident from trends of the dissipation rate, energy spectra, and distribution of eddies with elevation. Therefore, the presence of a WBL generates a shear production peak and rapid increase in the dissipation rate at higher elevations than those found in rough-wall steady boundary layers. Transition between current and wave boundary layers is also characterized by broad Reynolds stress peaks and shear production exceeding the dissipation rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据