4.3 Article

Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME)

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2009JD013601

关键词

-

资金

  1. National Park Service
  2. Joint Fire Science Program (JFSP) [05-3-1-06]
  3. Department of Energy

向作者/读者索取更多资源

[1] During the Fire Laboratory at Missoula Experiments (FLAME), we studied the physical, chemical, and optical properties of biomass burning smoke from the laboratory combustion of various wildland fuels. A good understanding of these properties is important in determining the radiative effects of biomass burning aerosols, with impacts on both local and regional visibility and global climate. We measured aerosol size distributions with two instruments: a differential mobility particle sizer (DMPS) and an optical particle counter (OPC). Volume size distributions from different burns varied from monomodal to multimodal, with geometric mean diameters ranging from 0.20-0.57 mu m and geometric standard deviations ranging from 1.68-2.97. By reconciling the differences between the two sizing instruments, we estimated aerosol effective refractive indices with values ranging from 1.41 to 1.61. We reconstructed aerosol chemical composition for each burn using data from filters collected and analyzed with the Interagency Monitoring of Protected Visual Environments (IMPROVE) samplers and protocols. Aerosols were generally comprised of carbon with organic species accounting for the largest mass fraction in most cases. We used composition data to calculate aerosol density, which ranged from 1.22-1.92 g cm(-3), and real and imaginary refractive indices, which had ranges of 1.55-1.80 and 0.01-0.50 respectively. Aerosol physical, chemical, and optical characterizations were combined to calculate dry mass scattering (MSE) and absorption (MAE) efficiencies at 532 nm. These parameters had values between 1.6-5.7 m(2) g(-1) and 0.04-0.94 m(2) g(-1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据