4.3 Article

Separation of longwave climate feedbacks from spectral observations

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2009JD012766

关键词

-

资金

  1. NOAA Climate and Global Change

向作者/读者索取更多资源

We conduct a theoretical investigation into whether changes in the outgoing longwave radiation (OLR) spectrum can be used to constrain longwave greenhouse-gas forcing and climate feedbacks, with a focus on isolating and quantifying their contributions to the total OLR change in all-sky conditions. First, we numerically compute the spectral signals of CO2 forcing and feedbacks of temperature, water vapor, and cloud. Then, we investigate whether we can separate these signals from the total change in the OLR spectrum through an optimal detection method. Uncertainty in optimal detection arises from the uncertainty in the shape of the spectral fingerprints, the natural variability of the OLR spectrum, and a nonlinearity effect due to the cross-correlation of different climate responses. We find that the uncertainties in optimally detected greenhouse-gas forcing, water vapor, and temperature feedbacks are substantially less than their overall magnitudes in a double-CO2 experiment, and thus the detection results are robust. The accuracy in surface temperature and cloud feedbacks, however, is limited by the ambiguity in their fingerprints. Combining ambiguous feedback signals reduces the uncertainty in the combined signal. Auxiliary data are required to fully resolve the difficulty.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据