4.3 Article

Reconstruction of images degraded by aerosol scattering and measurement noise

期刊

OPTICAL ENGINEERING
卷 54, 期 3, 页码 -

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.OE.54.3.033101

关键词

scattering; point spread function; aerosol blur; measurement noise; linear reconstruction

类别

向作者/读者索取更多资源

Images measured through the atmosphere are degraded by scattering and absorption from aerosols along the path and by atmospheric turbulence. In the presence of heavy scattering at visible and infrared wavelengths, the distances over which reasonable observations are possible are quite short compared to astronomical imaging paradigms, and aerosol scattering effects dominate the degradation of the point spread function (PSF) due to atmospheric effects. In addition to aerosol-induced blurring, measurement noise effects are present in observed images. We examine the problem of reconstructing images degraded by aerosol blur and measurement noise using estimates of the overall PSF, which account for unscattered and scattered radiation detected by the imaging system. Representative images of a spoke target acquired under various conditions of scattering and photon flux levels were simulated, and reconstruction of the degraded images is performed using two linear reconstruction algorithms: a Wiener filter and a constrained least squares filter. Results of the reconstructions show that spatial resolution can be recovered in badly blurred images up to the limit imposed by the noise effective cutoff spatial frequency of the measurement. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据